29 resultados para Detergent Additives
Resumo:
Antioxidants are substances that when present at low concentrations compared to that of an oxidisable substrate significantly delays or inhibits oxidation of that substrate in food products or in living systems. Antioxidants are either endogenous to the body or derived from the diet. Several types of synthetic antioxidants like BHT, BHA, TBHQ etc. are also used in the food industry. However, findings and subsequent publicity has fostered significant consumer resistance to the use of synthetic food additives as antioxidants, colourants etc. and therefore food industry is in search of potential natural antioxidants from edible sources.The major dietary sources of antioxidant phytochemicals are cereals, legumes, fruits, vegetables, oilseeds, beverages, spices and herbs. In the present study, we have focused on rice bran and its byproducts. Rice is one of the oldest of food crops and has been a staple food in India from very ancient times. It is also the staple food for about 60% of the world's population. Rice bran is a byproduct of the rice milling industry and is a potential commercial source of a healthy edible oil viz. rice bran oil and a variety of bio-active phytochemicals.Defatted rice bran (DRB), a byproduct of rice bran oil extraction, is also a good source of insoluble dietary fiber, protein, phytic acid, inosito I, vitamin B and a variety of other phytochemicals. Though the antioxidant potential of DRB has been demonstrated, it still remained a relatively unexplored source material, which demanded further investigation especially with regard to its detailed phytochemical profile leading to practical application. The focus of the present investigation therefore has been on DRB primarily to establish its phytochemical status and feasibility of using it as a source of bio-active phytochemicals and natural antioxidants leading to value addition of DRB otherwise used as cattle feed. To gain a better understanding of the value of rice bran as a source of phytochemicals, five popular rice varieties of the region viz. PTB 50, PTB 39, PTB 38, JA Y A, and MO 10 and a wild variety (oryza nivara) that is mainly used for medicinal applications in traditional ayurvedic system were characterized along with commercial samples of rice bran. The present study also explains the feasibility of a process for the extraction, enrichment, and isolation of antioxidant compounds from DRB. The antioxidant potential of the extracts were evaluated both in bulk oils and in food relevant model emulsions, using standard in vitro models. Radical scavenging effects, indicative of possible biological effects, were also evaluated.
Resumo:
In this paper, we present a laser-induced photoacoustic study on the photostability of laser dye Coumarin 540 doped in PMMA matrix and modified by the incorporation of low-molecular weight additives. The dependence of photostability of the dye on various experimental conditions, such as nature of solvents, incident optical power and dye concentration, is investigated in detail. The activation rates for the bleaching process are calculated for different concentrations and they suggest the possibility of two distinct mechanisms responsible for photodegradation. Further, analysis of the data confirms the linear dependence of photodegradation on the intensity of incident radiation. The role of different externally influencing parameters, such as wavelength and modulation frequency of incident radiation, is also discussed.
Resumo:
In the present study,heterotrophic protease producing bacterial isolates were screened for protease activity and a potent protease producing bacterial isolate was selected,identified and coded as Pseudomonas aeruginosa MCCB 123.The organism was capable of producing three different types of enzymes each having potential industrial applications.The non-toxic nature of the bacterial strain and the relatively non-toxic nature of three enzymes suggested their poetential application in various industries.Application of LasA protease and beta-1,3 glucanase in DNA extraction is a promising area for commercial utilization. LasB protease can find its potential application in detergent and tanning industries.As on today Bacillus sp.has been the source of commercial proteases,and the ones produced form P.aeruginosa 123 can pave way for making the industrial and biomedical processes more cost effective and refined.
Resumo:
This thesis entitled Development of nitrifying ans photosynthetic sulfur bacteria based bioaugmentation systems for the bioremediation of ammonia and hydregen sulphide in shrimp culture. the thesis is to propose a sustainable, low cost option for the mitigation of toxic ammonia and hydrogen sulphide in shrimp culture systems. Use of ‘bioaugmentors’ as pond additives is an emerging field in aquaculture. Understanding the role of organisms involved in the ‘bioaugmentor’ will obviously help to optimize conditions for their activity.The thesis describes the use of wood powder immobilization of nitrifying consortia.Shrimp grow out systems are specialized and highly dynamic aquaculture production units which when operated under zero exchange mode require bioremediation of ammonia, nitrite nitrogen and hydrogen sulphide to protect the crop. The research conducted here is to develop an economically viable and user friendly technology for addressing the above problem. The nitrifying bacterial consortia (NBC) generated earlier (Achuthan et al., 2006) were used for developing the technology.Clear demonstration of better quality of immobilized nitrifiers generated in this study for field application.
Resumo:
With the increase in population, housing and construction of various facilities have been a problem with urbanization. Having exhausted all the trouble free hand, man is nowon the lookout for techniques to improve areas which were originally considered uninhabitable. Thus this study is based on the nature and engineering behavior of soft clays covering long stretches of coastal line and methods to improve their geotechnical properties .The main aim of the present investigation is to study in detail the physical and engineering behavior of the marine clays of Cochin. While it is well known that the marine clays have been posing numerous problems to foundation engineers all along, the relevant literature reveals that no systematic and comprehensive study has been attempted to date. The: knowledge gained through the study is suitably used to improve these properties with appropriate additives.
Resumo:
The primary aim of this work has been to prepare efficient and cost effective polymer bound antioxidants by direct’ attachment of conventional antioxidants to a modified polymer. Due to the importance and easy availability of natural rubber in Kerala, it is proposed to make use of low molecular weight natural rubber as the polymer substrate for binding the antioxidant in most cases. The molecular weight of such low molecular weight natural rubber can be easily manipulated by varying the time of mastication, UV—irradiation etc. Further, the bound antioxidant may also get vulcanized during the vulcanization of the elastomer to which it is added, making the antioxidant non—volatile and non extractable. Several methods are proposed to be investigated for attaching the antioxidant to the low molecular weight natural rubber such as modified Friedel-Craft's alkylation reaction, binding during UV—irradiation, binding during aggressive mastication etc. The efficiency of such rubber bound antioxidants is proposed to be compared with that of conventional antioxidants in terms of volatility, extractability in solvents, ageing resistance etc. Naturally occuring antioxidants such as cardanol, are also proposed to be modified by binding them to low molecular weight natural rubber. The study is undertaken with the intention of generating a class of bound antioxidants which can be used in elastomers for aggressive and long term application.
Resumo:
The study is undertaken on PVC blends because of their all-round importance-One of the most prominent needs of PVC in application end-use is permanent plasticizationlo. Butadiene-acrylonitrile rubber (NBR) has been utilized as permanent plasticizer for PVC since the 1940s for wire and cable insulation, food contact, and pondliners used for oil containment23'24. Also plasticized PVC has been added to vulcanizable nitrile rubber, to yield improved ozone, thermal ageing, and chemical resistance resulting in applications including fuel hose covers, gaskets, conveyor belt covers, and printing roll covers. This blend is miscible in the range of 23 to 45 per cent acrylonitrile content in the butadiene-acrylqnitrile copolymerzs. The first phase of the study was directed towards modification blends. These blends, in addition to the polymers, require a host of additives like curatives for the NBR phase and stabilizers for the PVC phase26of the existing PVC blends, especially NBR/PVC. The second phase of the study was directed towards the development of novel PVC based blends. Chloroprene rubber (polychloroprene) (CR) is structurally similar to PVC and hence is likely to form successful blends with PVC32.
Resumo:
The overall objective of the present study was to develop a novel and economic reclaiming process that does not adversely affect the quality of rubber and to investigate methods of utilising the reclaim. Since waste latex products represent a potential source of high quality rubber hydrocarbon, it was decided to develop a process based on such latex wastes. The study revealed that latex reclaim could replace raw natural rubber upto about 50 per cent of its weight without any serious deterioration in mechanical properties.
Resumo:
Microbial enzymes are in great demand owing to their importance in several industries such as brewing, baking, leather, laundry detergent, dairy. starch processing and textiles besides pharmaceuticals. About 80% of the enzymes produced through fermentation and sold in the industrial scale are hydrolytic enzymes. Due to recognition of new and new applications, an intensive screening of different kinds of enzymes with novel properties, from various microorganisms, is being pursued all over the world. Bacillus sp are largely known to produce a-amylase, among the different groups of microoganisms, at industrial level. They are known to produce both saccharifying and liquefying a-amylases (Fukumoto 1963; walker and Campbell, 1967a). which are distinguishable by their mechanisms of starch degradation by the fact that the saccharifying asamylases produce an increase in reducing power about twice that of the liquefying enzyme (Fukumoto, 1963; Pazur and Okada, 1966). Under this circumstances, the present study was undertaken, with a View to utilise a fast growing B.coagu1ans isolated from soil, for production of thermostable and alkaline oz-amylase under different fermentation processes
Resumo:
The main objectives of the investigations reported in the present thesis are the following: (1) to find out some industrial wastes as cheaper additives to augment the air-blowing polymerization process of bitumen. This will bring down the cost of production of industrial bitumen which can be applied for the manufacture of bitumenous paints, roofing and flooring materials etc. (2) to find out suitable promoters for the above additives. This will bring down the consumption of the additives (3) to help in the industrial pollution control (4) to investigate the usefulness of the industrial bitumen produced in the production of bituminous paints (5) to find out thekinetic parameters of the reactions invovled with different additives. This is essential for the design, construction and operation of new industrial bitumen plants using the additives investigated. This will also enable us to establish the mechanism of the reactions involved in the process
Resumo:
Unprocessed seafood harbor high number of bacteria, hence are more prone to spoilage. In this circumstance, the use of spice in fish for reduction of microorganism can play an important role in seafood processing. Many essential oils from herbs and spices are used widely in the food, health and personal care industries and are classified as GRAS (Generally regarded as safe) substances or are permitted food additives. A large number of these compounds have been the subject of extensive toxicological scrutiny. However, their principal function is to impart desirable flavours and aromas and not necessarily to act as antimicrobial agents. Given the high flavour and aroma impact to plant essential oils, the future for using these compound as food preservatives lies in the careful selection and evaluation of their efficacy at low concentrations but in combination with other chemical preservatives or preservation processes. For this reason they are worth of study alone or in combination with processing methods in order to establish if they could extend the shelf-life of foods. In this study, the effect of the spices, clove, turmeric, cardamom, oregano, rosemary and garlic in controlling the spoilage and pathogenic bacteria is investigated. Their effect on biogenic amine formation in tuna especially, histamine, as a result of bacterial control is also studied in detail. The contribution of spice oleoresin in the sensory and textural parameters is investigated using textural profile analysis and sensory panel. Finally, the potential of spices in quality stabilization and in increasing the shelf–life of tuna during frozen storage is analysed
Resumo:
Engyodontium album isolated from marine sediment produced protease, which was active at pH 11. Process parameters influencing the production of alkaline protease by marine E. album was optimized. Particle size of <425 mm, 60% initial moisture content and incubation at 25 8C for 120 h were optimal for protease production under solid state fermentation (SSF) using wheat bran. The organism has two optimal pH (5 and 10) for maximal enzyme production. Sucrose as carbon source, ammonium hydrogen carbonate as additional inorganic nitrogen source and amino acid leucine enhanced enzyme production during SSF. The protease was purified and partially characterized. A 16-fold purified enzyme was obtained after ammonium sulphate precipitation and ion-exchange chromatography. Molecular weight of the purified enzyme protein was recorded approximately 38 kDa by SDS-PAGE. The enzyme showed maximum activity at pH 11 and 60 8C. Activity at high temperature and high alkaline pH suggests suitability of the enzyme for its application in detergent industry
Characterization of an extracellular alkaline serine protease from marine Engyodontium album BTMFS10
Resumo:
An alkaline protease from marine Engyodontium album was characterized for its physicochemical properties towards evaluation of its suitability for potential industrial applications. Molecular mass of the enzyme by matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis was calculated as 28.6 kDa. Isoelectric focusing yielded pI of 3–4. Enzyme inhibition by phenylmethylsulfonyl fluoride (PMSF) and aprotinin confirmed the serine protease nature of the enzyme.Km, Vmax, and Kcat of the enzyme were 4.727 9 10-2 mg/ml, 394.68 U, and 4.2175 9 10-2 s-1, respectively. Enzyme was noted to be active over a broad range of pH (6–12) and temperature (15–65 C), withmaximumactivity at pH 11 and 60 C. CaCl2 (1 mM), starch (1%), and sucrose (1%) imparted thermal stability at 65 C. Hg2?, Cu2?, Fe3?, Zn2?, Cd?, and Al3? inhibited enzyme activity, while 1 mMCo2? enhanced enzyme activity. Reducing agents enhanced enzyme activity at lower concentrations. The enzyme showed considerable storage stability, and retained its activity in the presence of hydrocarbons, natural oils, surfactants, and most of the organic solvents tested. Results indicate that the marine protease holds potential for use in the detergent industry and for varied applications.
Resumo:
Chemical sensors have growing interest in the determination of food additives, which are creating toxicity and may cause serious health concern, drugs and metal ions. A chemical sensor can be defined as a device that transforms chemical information, ranging from the concentration of a specific sample component to total composition analysis, into an analytically useful signal. The chemical information may be generated from a chemical reaction of the analyte or from a physical property of the system investigated. Two main steps involved in the functioning of a chemical sensor are recognition and transduction. Chemical sensors employ specific transduction techniques to yield analyte information. The most widely used techniques employed in chemical sensors are optical absorption, luminescence, redox potential etc. According to the operating principle of the transducer, chemical sensors may be classified as electrochemical sensors, optical sensors, mass sensitive sensors, heat sensitive sensors etc. Electrochemical sensors are devices that transform the effect of the electrochemical interaction between analyte and electrode into a useful signal. They are very widespread as they use simple instrumentation, very good sensitivity with wide linear concentration ranges, rapid analysis time and simultaneous determination of several analytes. These include voltammetric, potentiometric and amperometric sensors. Fluorescence sensing of chemical and biochemical analytes is an active area of research. Any phenomenon that results in a change of fluorescence intensity, anisotropy or lifetime can be used for sensing. The fluorophores are mixed with the analyte solution and excited at its corresponding wavelength. The change in fluorescence intensity (enhancement or quenching) is directly related to the concentration of the analyte. Fluorescence quenching refers to any process that decreases the fluorescence intensity of a sample. A variety of molecular rearrangements, energy transfer, ground-state complex formation and collisional quenching. Generally, fluorescence quenching can occur by two different mechanisms, dynamic quenching and static quenching. The thesis presents the development of voltammetric and fluorescent sensors for the analysis of pharmaceuticals, food additives metal ions. The developed sensors were successfully applied for the determination of analytes in real samples. Chemical sensors have multidisciplinary applications. The development and application of voltammetric and optical sensors continue to be an exciting and expanding area of research in analytical chemistry. The synthesis of biocompatible fluorophores and their use in clinical analysis, and the development of disposable sensors for clinical analysis is still a challenging task. The ability to make sensitive and selective measurements and the requirement of less expensive equipment make electrochemical and fluorescence based sensors attractive.