25 resultados para Data recovery (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any automatically measurable, robust and distinctive physical characteristic or personal trait that can be used to identify an individual or verify the claimed identity of an individual, referred to as biometrics, has gained significant interest in the wake of heightened concerns about security and rapid advancements in networking, communication and mobility. Multimodal biometrics is expected to be ultra-secure and reliable, due to the presence of multiple and independent—verification clues. In this study, a multimodal biometric system utilising audio and facial signatures has been implemented and error analysis has been carried out. A total of one thousand face images and 250 sound tracks of 50 users are used for training the proposed system. To account for the attempts of the unregistered signatures data of 25 new users are tested. The short term spectral features were extracted from the sound data and Vector Quantization was done using K-means algorithm. Face images are identified based on Eigen face approach using Principal Component Analysis. The success rate of multimodal system using speech and face is higher when compared to individual unimodal recognition systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative caching is used in mobile ad hoc networks to reduce the latency perceived by the mobile clients while retrieving data and to reduce the traffic load in the network. Caching also increases the availability of data due to server disconnections. The implementation of a cooperative caching technique essentially involves four major design considerations (i) cache placement and resolution, which decides where to place and how to locate the cached data (ii) Cache admission control which decides the data to be cached (iii) Cache replacement which makes the replacement decision when the cache is full and (iv) consistency maintenance, i.e. maintaining consistency between the data in server and cache. In this paper we propose an effective cache resolution technique, which reduces the number of messages flooded in to the network to find the requested data. The experimental results gives a promising result based on the metrics of studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image processing has been a challenging and multidisciplinary research area since decades with continuing improvements in its various branches especially Medical Imaging. The healthcare industry was very much benefited with the advances in Image Processing techniques for the efficient management of large volumes of clinical data. The popularity and growth of Image Processing field attracts researchers from many disciplines including Computer Science and Medical Science due to its applicability to the real world. In the meantime, Computer Science is becoming an important driving force for the further development of Medical Sciences. The objective of this study is to make use of the basic concepts in Medical Image Processing and develop methods and tools for clinicians’ assistance. This work is motivated from clinical applications of digital mammograms and placental sonograms, and uses real medical images for proposing a method intended to assist radiologists in the diagnostic process. The study consists of two domains of Pattern recognition, Classification and Content Based Retrieval. Mammogram images of breast cancer patients and placental images are used for this study. Cancer is a disaster to human race. The accuracy in characterizing images using simplified user friendly Computer Aided Diagnosis techniques helps radiologists in detecting cancers at an early stage. Breast cancer which accounts for the major cause of cancer death in women can be fully cured if detected at an early stage. Studies relating to placental characteristics and abnormalities are important in foetal monitoring. The diagnostic variability in sonographic examination of placenta can be overlooked by detailed placental texture analysis by focusing on placental grading. The work aims on early breast cancer detection and placental maturity analysis. This dissertation is a stepping stone in combing various application domains of healthcare and technology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the advancement in mobile devices and wireless networks mobile cloud computing, which combines mobile computing and cloud computing has gained momentum since 2009. The characteristics of mobile devices and wireless network makes the implementation of mobile cloud computing more complicated than for fixed clouds. This section lists some of the major issues in Mobile Cloud Computing. One of the key issues in mobile cloud computing is the end to end delay in servicing a request. Data caching is one of the techniques widely used in wired and wireless networks to improve data access efficiency. In this paper we explore the possibility of a cooperative caching approach to enhance data access efficiency in mobile cloud computing. The proposed approach is based on cloudlets, one of the architecture designed for mobile cloud computing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An Overview of known spatial clustering algorithms The space of interest can be the two-dimensional abstraction of the surface of the earth or a man-made space like the layout of a VLSI design, a volume containing a model of the human brain, or another 3d-space representing the arrangement of chains of protein molecules. The data consists of geometric information and can be either discrete or continuous. The explicit location and extension of spatial objects define implicit relations of spatial neighborhood (such as topological, distance and direction relations) which are used by spatial data mining algorithms. Therefore, spatial data mining algorithms are required for spatial characterization and spatial trend analysis. Spatial data mining or knowledge discovery in spatial databases differs from regular data mining in analogous with the differences between non-spatial data and spatial data. The attributes of a spatial object stored in a database may be affected by the attributes of the spatial neighbors of that object. In addition, spatial location, and implicit information about the location of an object, may be exactly the information that can be extracted through spatial data mining

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In today's complicated computing environment, managing data has become the primary concern of all industries. Information security is the greatest challenge and it has become essential to secure the enterprise system resources like the databases and the operating systems from the attacks of the unknown outsiders. Our approach plays a major role in detecting and managing vulnerabilities in complex computing systems. It allows enterprises to assess two primary tiers through a single interface as a vulnerability scanner tool which provides a secure system which is also compatible with the security compliance of the industry. It provides an overall view of the vulnerabilities in the database, by automatically scanning them with minimum overhead. It gives a detailed view of the risks involved and their corresponding ratings. Based on these priorities, an appropriate mitigation process can be implemented to ensure a secured system. The results show that our approach could effectively optimize the time and cost involved when compared to the existing systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to be identified in elementary school where there is no one sign to be identified. By using any of the two classification methods, SVM and DT, we can easily and accurately predict LD in any child. Also, we can determine the merits and demerits of these two classifiers and the best one can be selected for the use in the relevant field. In this study, Sequential Minimal Optimization (SMO) algorithm is used in performing SVM and J48 algorithm is used in constructing decision trees.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient optic disc segmentation is an important task in automated retinal screening. For the same reason optic disc detection is fundamental for medical references and is important for the retinal image analysis application. The most difficult problem of optic disc extraction is to locate the region of interest. Moreover it is a time consuming task. This paper tries to overcome this barrier by presenting an automated method for optic disc boundary extraction using Fuzzy C Means combined with thresholding. The discs determined by the new method agree relatively well with those determined by the experts. The present method has been validated on a data set of 110 colour fundus images from DRION database, and has obtained promising results. The performance of the system is evaluated using the difference in horizontal and vertical diameters of the obtained disc boundary and that of the ground truth obtained from two expert ophthalmologists. For the 25 test images selected from the 110 colour fundus images, the Pearson correlation of the ground truth diameters with the detected diameters by the new method are 0.946 and 0.958 and, 0.94 and 0.974 respectively. From the scatter plot, it is shown that the ground truth and detected diameters have a high positive correlation. This computerized analysis of optic disc is very useful for the diagnosis of retinal diseases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A GIS has been designed with limited Functionalities; but with a novel approach in Aits design. The spatial data model adopted in the design of KBGIS is the unlinked vector model. Each map entity is encoded separately in vector fonn, without referencing any of its neighbouring entities. Spatial relations, in other words, are not encoded. This approach is adequate for routine analysis of geographic data represented on a planar map, and their display (Pages 105-106). Even though spatial relations are not encoded explicitly, they can be extracted through the specially designed queries. This work was undertaken as an experiment to study the feasibility of developing a GIS using a knowledge base in place of a relational database. The source of input spatial data was accurate sheet maps that were manually digitised. Each identifiable geographic primitive was represented as a distinct object, with its spatial properties and attributes defined. Composite spatial objects, made up of primitive objects, were formulated, based on production rules defining such compositions. The facts and rules were then organised into a production system, using OPS5