32 resultados para Cyclic voltammetry of copper complexes
Resumo:
In this thesis we report the synthsis and characterisation of new transition metal complexes of Pd(II),Cu(II),Ru(II) and Ir(III) of Schiff bases derived from quinoxaline-2-carboxaldehyde/3-hydroxyquinoxaline-2-carboxaldehyde and 5-aminoindazole.6-aminoindazole or 8-aminoquinoline.The complexes have been characterised by spectral and analytical data.Pd(II) and Cu(II) form square planar complexes and Ru(III) and Ir(III) form ctahedral complexes with these Schiff bases.The DNA binding properties of theses synthesised complexes have been studied by various methods including electronic absoption spectroscopy,cyclic voltammetry,different pulse voltammetry and circular dichroism spectra were used.Gel electrophoresis experiments were also performed to investigate the DNA cleavage of theses complexes.Furthermore Ru(III) and Ir(III) complexes find application as oxidation and hydogenation catalsts. The studies on catalytic activities has been presented.The metal complexes presented in this thesis assure significance as they contribute to the development of new DNA binding agents and antibacterial and anticancer drugs.
Resumo:
The current work deals with the synthesis and characterization of metal complexes derived from some substituted acylhydrazones. The hydrazones under investigation were characterized by IR, UV, NMR spectral studies and the molecular structure of one of the hydrazones was solved by single crystal XRD studies. In the present work dioxovanadium(V), manganese(II), cobalt(II/III), nickel(II), copper(II), zinc(II) and cadmium(II) complexes were synthesized and characterized by various spectroscopic techniques, molar conductance measurements, magnetic susceptibility measurements and cyclic voltammetry. Single crystals of some of the complexes were isolated and characterized by single crystal X-ray diffraction.The thesis is divided into eight chapters. Chapter 1 gives an introduction on hydrazones, diversity in their chelating behavior and their application in various fields. This chapter also describes different analytical techniques employed for the characterization of hydrazones and their metal complexes. Chapter 2 includes the synthesis and characterization of two substituted acylhydrazones. This chapter also discusses how the coordination behavior of hydrazones under investigation is interesting. Chapters 3-8 discuss the synthesis and characterization of some transition metal complexes derived from the acylhydrazones under study.The hydrazones synthesized were found to exist in the amido form. Various characterization techniques were carried out to explore the structure of the synthesized complexes. The results indicate that both the hydrazones coordinate through the pyridyl and azomethine nitrogens and amide oxygen either in enolate or neutral form. Out of synthesized complexes V(V), Zn/Cd(II) and one of the cobalt complex was found to diamagnetic. We could isolate single crystals of some of the complexes and most of the complexes crystallized were found to have a distorted octahedral geometry. Thus X-ray crystallographic study which was used as major tool in the structure determination revealed that the hydrazones undergo a rotation about the azomethine bond on complexation. We hope the work presented in the thesis would be helpful for those who are working in the field of metal complexes and can further they can be utilized for various applications.
Resumo:
The thermal diffusivities of some polystyrene supported Schiff complexes of Co(II) and Cu(II) were determined by the laser induced photoacoustic technique. The effect of metal as well as the halogen part on thermal diffusivity of polymer supported complexes was studied. The thermal diffusivity of Co complexes increases while it decreases in Cu complexes with Cl, Br and I substitutions, respectively.
Resumo:
Coordination chemistry of schiff bases is of considerable interest due to their various magnetic, catalytic and biological applications. Here it describes the spectral characterization of schiff bases and its Mn (II), Cu (II) and Ni (II) complexes. Then synthesis and spectral characterization of Zn (II), Cd (II) and Co (II) complexes of schiff base derived from 3-Formylsalicilic Acid and 1,3-diaminopropane. Then it discusses the synthesis and spectral studies of Copper (II) complexes of 2-Hydroxyacetophenone N-phenyl semicarbazone. Finally it discusses the synthesis and spectral characterization of Co (III) complexes of salicylaldehyde N-phenyl semicarbazone. The preparation and characterization of Cobalt (III) complexes of salicylaldehyde, N-phenylthiosemicarbazone containing hetrocyclic bases phenalthroline and bipyridine. Thiocyanate, azide and perchlorate ions act as coligands. Elemental analysis suggests +3 state for Cobalt. HNMR, IR and UV-visible spectra characterize the complexes.
Resumo:
This study concentrates the chemical properties of hydrazones due to its chelating capability and their pharmacological applications. Studies cover the preparation of different acid hydrazones and their structural studies and studies on their antimicrobial activity, synthesis and spectral characterization of different complexes of copper oxovanadium, manganese, nickel etc. Effect of incorporation of heterocyclic bases to the coordination sphere, change in the biological activity of acid hydrazones upon coordination, development of X-ray quality single crystals and its X-ray diffraction studies, studies on the redox behavior of the coordinated metal ions and correlation between the stereochemistry and biological activities.
Resumo:
The study deals with the diversity in structural and spectural characteristics of some transition metal complexes derived from aldehyde based thiosemicarbazone ligands thiosemicarbazones are a family of compounds with beneficial biological activity viz., anticancer,antitumour, antifungal, antibacterial, antimalarial, antifilarial, antiviral and anti-HIV activities. Many thiosemicarbazone ligands and their complexes have been prepared and screened for their antimicrobial activity against various types of fungi and bacteria. The results prove that the compounds exhibit antimicrobial properties and it is important to note that in some cases metal chelates show more inhibitory effects than the parent ligands. The increased lipophilicity of these complexes seems to be responsible for their enhanced biological potency. Adverse biological activities of thiosemicarbazones have been widely studied in rats and in other species. The parameters measured show that copper complexes caused considerable oxidative stress and zinc zinc complexes behaved as antioxidants. It has applications on analytical field also. Some thiosemicarbazones produce highly colored complexes with metal ions. This thesis aims to synthesis some novel thiosemicarbazone ligands and their transition metal complexes together with their physico-chemical characterization.
Resumo:
The study deals with structural and spectral investigations of transition metal complexes of di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones. The main objective and scope of the work deals with di-2-pyridyl ketone N(4),N(4)-disubstituted thiosemicarbazones are quardridentate NNNS donor ligands. To chosen this ligand for study because, the ligands are prepared and characterized for the first time, since there are two pyridyl nitorgens, dimmers and polymers of complexes may result leading to interesting structural aspects. The work includes the preparation of the thiosemicarbzones and their structural and spectral studies, synthesis and spectral characterization of complexes of copper(II),,nickel(II),manganese(II), dioxovanadium(V),cobalt(III),zinc(II),cadmium(II) of the ligand HL, synthesis and spectral characterization of complexes of copper(II),manganese(II), of the ligand HL and the development of X-ray quality crystals and its X-ray diffraction studies. The structural characterization techniques are elemental analysis, conductivity measurements, magnetic measurements, electronic spectroscopy, H NMR spectroscopy, Infrared spectroscopy and X-ray crystallography.
Studies on Some Transition Metal Complexes of Schiff Bases Derived from Quinoxaline-2-carboxaldehyde
Resumo:
Two series of transition metal complexes of Schiff bases derived from quinoxaline-2-carboxaldehyde with semicarbazide (QSC) and furfurylamine (QFA) were synthesised and characterised by elemental analyses, molar conductance and magnetic susceptibility measurements, IR, electronic and EPR spectral studies. The QSC complexes have the general formula [M(QSC)Cl2]. A tetrahedral structure has been assigned for the Mn(II), Co(II) and Ni(II) complexes and a square-planar structure for the Cu(II) complex. The QFA complexes have the formula [M(QFA)2Cl2]. An octahedral structure has been assigned for these complexes. All of the complexes exhibit catalytic activity towards the oxidation of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) using atmospheric oxygen. The cobalt(II) complex of the ligand QFA was found to be the most active catalyst.
Resumo:
The thesis deals with studies on the synthesis, characterisation and catalytic applications of some new transition metal complexes of the Schiff bases derived from 3-hydroxyquinoxaline 2-carboxaldehyde.. Schiff bases which are considered as ‘privileged ligands’ have the ability to stabilize different metals in different oxidation states and thus regulate the performance of metals in a large variety of catalytic transformations. The catalytic activity of the Schiff base complexes is highly dependant on the environment about the metal center and their conformational flexibility. Therefore it is to be expected that the introduction of bulky substituents near the coordination sites might lead to low symmetry complexes with enhanced catalytic properties. With this view new transition metal complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde have been synthesised. These Schiff bases have more basic donor nitrogen atoms and the presence of the quinoxaline ring may be presumed to build a favourable topography and electronic environment in the immediate coordination sphere of the metal. The aldehyde was condensed with amines 1,8-diaminonaphthalene, 2,3-diaminomaleonitrile, 1,2-diaminocyclohexane, 2-aminophenol and 4-aminoantipyrine to give the respective Schiff bases. The oxovanadium(IV), copper(II) and ruthenium(II)complexes of these Schiff bases were synthesised and characterised. All the oxovanadium(IV) complexes have binuclear structure with a square pyramidal geometry. Ruthenium and copper form mononuclear complexes with the Schiff base derived from 4- aminoantipyrine while binuclear square planar complexes are formed with the other Schiff bases. The catalytic activity of the copper complexes was evaluated in the hydroxylation of phenol with hydrogen peroxide as oxidant. Catechol and hydroquinone are the major products. Catalytic properties of the oxovanadium(IV) complexes were evaluated in the oxidation of cyclohexene with hydrogen peroxide as the oxidant. Here allylic oxidation products rather than epoxides are formed as the major products. The ruthenium(II) complexes are found to be effective catalysts for the hydrogenation of benzene and toluene. The kinetics of hydrogenation was studied and a suitable mechanism has been proposed.
Resumo:
The thesis deals with our studies on the synthesis and elucidation of structure of some metal complexes of dithio ligands, such as the dithiocarbamates, xanthates and 2-aminocyclopent-1-ene-1-dithiocarboxylate and its N-alkyl derivatives.2-Aminocyclopent-1-ene-1-dithiocarboxylate (ACDA) is an interesting ligand, because of its potential dual capability of bonding between the metal and the ligand. Since the earlier reports on the complexes of ACDA contain contradictory ideas on the nature of its bonding, it was thought worthwhile to undertake a detailed and systematic study of these type of complexes. As the ACDA complexes have very low solubilities in solvents like chloroform, we have used the isopropyl derivative of ACDA as the ligand. The increased solubility of these complexes have made it possible to investigate their NMR and solution electronic spectra.The complexes of this ligand have not yet been reported in the literature.We have synthesised some new mixed ligand complexes of dithiocarbamates by reacting bis(dithiocarbamato)-µ-dichloro dicopper complexes (obtained by the reaction of mixed benzoic dithiocarbamic anhydride and copper(II) chloride) with ACDA or its N-alkyl derivatives.Interactions of metal halides with the mixed anhydrides formed from benzoylchloride and xanthates have also been investigated. Novel complexes of the type, [Cu2(RXant)CI] (R=i-Bu, i-Pr, n-Bu or n-Pr)) have been isolated from the reaction of copper(II) chloride and the mixed anhydride, and these reactions appear to be like the clock reactions reported in the literature.It also deal with the characterisation of the complexes of the type [Hg(R2d t c )X] (X=Cl, Br or 1),[Cu3(R2dtc)6][Cu2Br6] and [Cu(R2dtc)Cl2](R2=Me2,Et2,Pip,Morph or Pyrr)respectively, synthesised by simple and novel routes, different from those reported earlier.
Resumo:
Metallo-organic chemistry,incorporating the frontiers of both inorganic and organic chemical aspects,is a topic of utility concern.The first exploration of coordinated metal complexes dates back to the ninettenth century,during the days of Alfred Werner.Thereafter,inorganic chemistry witnessed a great outflow of coordination compounds,with unique structural characteristics and diverse applicatons.The diversity in structures exhibited by the coordination complexes of multidentate ligands have led to their usage as sensors,models for enzyme mimetic centers,medicines etc.The liganda chosen are of prime importance in determining the properties of coordination compounds.Schiff bases are compounds obtained by the condensation of an aidehyde or ketone with an amine.The chemical properties of Schiff bases and their complexes are widely explored in recent years owing to their pharmacological activity,their catalytic activities and so on.On the other hand pseudohalides like azide and thiocyanate are versatile candidates for the construction of dimeric or polymeric complexes having excellent properties and diverse applications.So a combination of the Schiff bases and the pseudohalogens for the synthesis of metal complexes can bring about interesting results.An attempt into this area is the besis of this Ph.D theis.
Resumo:
Polymer supports are efficient reagents,substrates and catalysts and they are extensively used for carrying out reactions at controlled rates.Tailor-made polymer supports are highly versatile which have opened an excellent area of research.Now polymer supported chemistry is being exploited at an amazing rate and it seems to join the routine world of organic synthesis.Polymer supported ligands are found to be efficient complexing agents whose high selectivity enables the analysis and removal of heavy metal ions which are toxic to all the living organisms of land and sea.polymer supported membranes function as ion selective potentiometric sensors which allow the exchange of specific ions among other ions of the same charge.In this investigation three series of polymeric schiff bases and three series of metal complexes have been prepared.An attempt is done to develop optimum conditions for the removal of heavy metal ions using polymeric schiff bases.A novel copper sensor electrode have also been prepared from polymer supported metal complex.
Resumo:
The present work deals with the complexation of Schiff bases of aroylhydrazides with various transition metal ions. The hydrazone systems selected for study are capable of forming bridged polymeric structures which is one of the fascinating subjects in the crystal engineering of coordination polymers owing to their attractive new topologies and intriguing structural features. Complexation with metal ions like copper, manganese, vanadium, nickel, palladium, zinc and cadmium are tried. Various spectral techniques are employed for characterization. The structures of some complexes have been well established by single crystal X-ray diffraction studies.The work is presented in seven chapters and the last section deals with summary and conclusion. The studies reveal that the aroylhydrazone systems vary in their geometrical configuration depending on the substituents. The coordination modes of the ligands also differ upon chelating with metal ions. One of the hydrazone system selected for study proved that it could give rise to polymeric metal complexes.
Resumo:
The thesis is an introduction to evaluate the coordination behaviour of a few compounds of our interest. The crucial aim of these investigations was to synthesize and characterize some transition metal complexes using the ligands benzaldehyde, 2-hydroxybenzaldehyde and 4-methoxybenzaldehyde N(4)-ring incorporated thiosemicarbazones.The study involves a brief foreword of the metal complexes of thiosemicarbazones including their bonding, stereochemistry and biological activities.The different analytical and spectroscopic techniques used for the analysis of the ligands and their complexes are discussed.It also deals with the synthesis and spectral characterization of the thiosemicarbazones and single crystal X-ray diffraction study of one of them.Chapter 3 describes the synthesis, spectral characterization, single crystal X-ray diffraction studies of copper(ll) complexes with ONS/NS donor thiosemicarbazones. Chapter 4 deals with the synthesis, spectral characterization and single crystal X-ray diffraction studies of nickel(II) complexes. Chapter 5 contains the synthesis, structural and spectral characterization of the cobalt(III) complexes. Chapters 6 and 7 include the synthesis, structural and spectral characterization of zinc(II) and cadmium(ll) complexes with ONS/NS donor thiosemicarbazones.