42 resultados para Curing lights
Resumo:
It is observed that reclamation of natural rubber latex based rubber using 2,2'-dibenzamidodiphenvldisulphide as reclaiming agent is an optional methodology for recycling of waste latex rubber (WLR). For progressive replacement of virgin natural rubber by the reclaim, two alternatives curing system were investigated: adjustment or reduction of the curing system with increasing reclaim content, to compensate for the extra amount of curatives brought along by the reclaim. For fixed curing system, as if the reclaim were equivalent to virgin NR. The cure behavior, final crosslink density and distribution, mechanical properties, and dynamic viscoelastic properties of the blends with reclaimed WLR are measured and compared with the virgin compound. The morphology of the blends, sulfur migration, and final distribution are analyzed.The mechanical and dynamic viscoelastic properties deteriorate for both curing systems, but to a lesser extent for fixed curing system compared to adjusted curing system. With the fixed cure system, many properties like tensile strength and compression set do still deteriorate, but tan 6 and Mrrr„/Murxr, representative for the rolling resistance of tires are improved. On the other hand, with the adjusted cure system both mechanical and dynamic properties still deteriorate.
Resumo:
Ethylene-propylene-diene rubber (EPDM) and isobutylene-isoprene rubber (IIR) were compounded, precured to a low degree, and then were blended with natural rubber (NR). The compounding ingredients for NR were then added and the final curing was done. NR/ EPDM and NR/IIR blends, prepared using this method, were found to possess much improved mechanical properties as compared to their conventional counterparts. The optimum precuring crosslink density that has to be given to the EPDM and IIR phases has been determined.
Resumo:
Blends of natural rubber (NR) with styrene-butadiene rubber (SBR), polybutadiene rubber (BR), ethylene-propylene terpolymer (EPDM) and acrylonitrile-butadiene rubber (NBR) were vulcanised using an efficient vulcanisation (EV) system and a semi-EV system. Compatible blends show a definite pattern of curing whereas the incompatible blends show no such pattern.
Resumo:
A carbon black filled 50/50 natural rubber (NR)/styrene-butadiene rubber (SBR) blend is vulcanized using several conventional curing systems designed by varying the amounts of sulphur and accelerator. The cure characteristics and the properties of the vulcanizates are compared. The quantity and quality of crosslinks in each case are evaluated by chemical probes to correlate them with the properties.
Resumo:
Waste latex products are converted to a processabto material by a novel economical process developed in our laboratory , It contains rubber hydrocarbon of very high quality and Is lightly cross -linked. Styrene-butadlene rubber is mixed with latex reclaim In different proportions . The mechanical properties are found to be improved up to 60 percent replacement of styrene-butadlene rubber by latex reclaim . The curing of styrene-butadiene rubber Is found to be accelerated by the addition of latex reclaim. The processablllty study shows that the blends can be processed similar to SBRINR blends.
Resumo:
ABSTRACT: Nylon tire cord (1680/2) was dipped in different adhesives based on resorcinol formaldehyde resin and latex (RFL) and was bonded to natural rubber-based compounds. The resin-rubber ratio in the RFL adhesive was optimized. The variation of pull-through load was studied by varying the drying and curing temperature of the dipped nylon tire cord. RFL adhesive based on vinylpyridine latex was found to have better rubber-to-nylon tire cord bonding, compared with the one based on natural rubber latex. Addition of a formaldehyde donor into the RFL adhesive/rubber compound improves adhesion.
Resumo:
Microcellular (MC) soles based on polybutadiene (BR) and low-density polyethylene (LDPE) blends for low-temperature applications were developed. A part of BR in BR-LDPE blend was replaced by natural rubber (NR) for property improvement. The BR-NR-LDPE blend-based MC sole shows good technical properties. Sulphur curing and DCP curing were tried in BR-LDPE and NR-BR-LDPE blends. Study shows that sulphur-cured MC sheets possess better technical properties than DCPcured MC sheets. 90/10 BR-LDPE and 60/30/10 BR-NR-LDPE blend combinations are found to be suitable for low-temperature applications.
Resumo:
The principal objective of this study was to explore the compatibility of a blend of two synthetic elastomers viz., ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR). Various commercial grades of EPDM were blended with a specific grade of CIIR at different proportions. The mechanical properties such as tensile strength, tear strength, ageing resistance, etc. were studied. On the basis of the observed physical properties, two particular grades of EPDM were found to be compatible with CIIR. Differential scanning calorimetry and scanning electron microscopy confirmed the results. Chlorosulphonated polyethylene was added as a compatibilizing agent to overcome the phase separation of the other two incompatible grades of EPDM in blending with CIIR. The results revealed that the addition of compatibilizer greatly improves the compatibility and thereby the properties of the blends.
Resumo:
A detailed study of the blends of ethylene-propylene-diene rubber (EPDM) and chlorobutyl rubber (CIIR) is proposed in this study. These blends may find application in the manufacture of curing diaphragms/curing envelopes for tire curing applications. EPDM possesses better physical properties such as high heat resistance, ozone resistance, cold and moisture resistance, high resistance to permanent defonnation, very good resistance to flex cracking and impact. Because of the low gas and moisture penneability, good weathering resistance and high thermal stability of CIIR, blends of EPDM with CIlR may be attractive, if sufficient mechanical strength can be developed. Although a lot of work has been done on elastomer blends, studies on the blends of EPDM and CIIR rubbers are meagre. Hence in this investigation it is proposed to make a systematic study on the characteristics of EPDM and CIIR rubber blends.The mechanical and physical properties of an elastomer blend depend mainly on the blend compatibility. So in the first part of the study, it is proposed to develop compatible blends of EPDM with CIIR. Various commercial grades of ethylenepropylene- diene rubber are proposed to be blended with a specific grade of chlorobutyl rubber at varying proportions. The extent of compatibility in these blends is proposed to be evaluated based on their mechanical properties such as tensile strength, tear strength and ageing resistance. In addition to the physical property measurements, blend compatibility is also proposed to be studied based on the glass transition behavlour of the blends in relation to the Tg's of the individual components using Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The phase morphology of the blends is also proposed to be investigated by Scanning Electron Microscopy (SEM) studies of the tensile fracture surfaces. In the case of incompatible blends, the effect of addition of chlorosulfonated polyethylene as a compatibiliser is also proposed to be investigated.In the second part of the study, the effect of sulphur curing and resin curing on the curing behaviour and the vulcanizate properties of EPDM/CIIR blends are planned to be evaluated. Since the properties of rubber vulcanizates are determined by their network structures, it is proposed to determine the network structure of the vulcanizates by chemical probes so as to correlate it with the mechanical properties.In the third part of the work, the effect of partial precuring of one of the components prior to blending as a possible means of improving the properties of the blend is proposed to be investigated. This procedure may also help to bring down the viscosity mismatch between the constituent e1astomers and provide covulcanization of the blend.The rheological characteristics and processability of the blends are proposed to be investigated in the last part of the study. To explore their possible applications, the air permeability of the blend samples at varying temperatures is proposed to be measured. The thermal diffusivity behaviour of EPDM/CIlR blends is also proposed to be investigated using novel laser technique. The thermal diffusivity of the blends along with the thermal degradation resistance may help to determine whether the blends are suitable for high temperature applications such as in the manufacturing of curing envelope.
Resumo:
The aim of the investigation is to develop new high performance adhesive systems based on neoprene-phenolic blends. Initially the effect of addition of all possible ingredients like fillers, adhesion promoters, curing agents and their optimum compositions to neoprene solution is investigated. The phenolic resin used is a copolymer of phenol-cardanolformaldehyde prepared in the laboratory. The optimum ratio between phenol and cardanol that gives the maximum bond strength in metal-metal, rubber-rubber and rubber-metal specimens has been identified. Further the ratio between total phenols and formaldehyde is also optimised. The above adhesive system is further modified by the addition of epoxidized phenolic novolacs. For this purpose, phenolic novolac resins are prepared in different stoichiometric ratios and are subsequently epoxidized. The effectiveness of the adhesive for bonding different metal and rubber substrates is another part of the study. To study the ageing behaviour, different bonded specimens are exposed to high temperature, hot water and salt water and adhesive properties have been evaluated. The synthesized resins have been characterized by FTIR , HNMR spectroscopy. The molecular weights of the resins have been obtained by GPC. Thermogravimetric analysis and differential scanning calorimetry are used to study the thermal properties. The fractured surface analysis is studied by scanning electron microscopy. The study has brought to light the influence of phenol/ formaldehyde stoichiometric ratio, addition of cardanol (a renewable resource), adhesion promoters and suitability of the adhesive for different substrates and the age resistance of adhesive joints among other things.
Resumo:
The oceans have proved to be an interminable source of new and effective drugs. Innumerable studies have proved that specific compounds isolated from marine organisms have great nutritional and pharmaceutical value. Polyunsaturated fattyacids (PUFA) in general are known for their dietary benefits in preventing and curing several critical ailments including Coronary heart disease (CHD) and cancers of various kinds. Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) are two PUFA which are entirely marine in origin – and small Clupeoid fishes like sardines are known to be excellent sources of these two compounds. In this study, we selected two widely available Sardine species in the west coast, Sardinella longiceps and Sardinella fimbriata, for a comparative analysis of their bioactive properties. Both these sardines are known to be rich in EPA and DHA, however considerable seasonal variation in its PUFA content was expected and these variations studied. An extraction procedure to isolate PUFA at high purity levels was identified and the extracts obtained thus were studied for anti-bacterial, anti-diabetic and anti-cancerous properties.Samples of both the sardines were collected from landing centre, measured and their gut content analysed in four different months of the year – viz. June, September, December and March. The fish samples were analyzed for fattyacid using FAME method using gas chromatography to identify the full range of fattyacids and their respective concentration in each of the samples. The fattyacids were expressed in mg/g meat and later converted to percentage values against total fatty acids and total PUFA content. Fattyacids during winter season (Dec-Mar) were found to be generally higher than spawning season (June-Sept). PUFA dominated the profiles of both species and average PUFA content was also higher during winter. However, it was found that S. longiceps had proportionately higher EPA as compared to S. fimbriata which was DHA rich. Percentage of EPA and DHA also varied across months for both species – the spawning season seemed to show higher EPA content in S. longiceps and higher DHA content in S. fimbriata. Gut content analysis indicate that adult S. fimbriata is partial to zooplanktons which are DHA rich while adult S. longiceps feed mainly on EPA rich phytoplankton. Juveniles of both species, found mainly in winter, had a gut content showing more mixed diet. This difference in the feeding pattern reflect clearly in their PUFA profile – adult S. longiceps, which dominate the catch during the spawn season, feeding mostly on phytoplankton is concentrated with EPA while the juveniles which are found mostly in the winter season has slightly less EPA proportion as compared to adults. The same is true for S. fimbriata adults that are caught mostly in the spawning season; being rich in DHA as they feed mainly on zooplankton while the juveniles caught during winter season has a relatively lower concentration of DHA in their total PUFA.Various extraction procedures are known to obtain PUFA from fish oil. However, most of them do not give high purity and do not use materials indicated as safe. PUFA extracts have to be edible and should not have harmful substances for applying on mice and human subjects. Some PUFA extraction procedures, though pure and non-toxic, might induce cis-trans conversions during the extraction process. This conversion destroys the benefits of PUFA and at times is harmful to human body. A method free from these limitations has been standardized for this study. Gas Chromatography was performed on the extracts thus made to ensure that it is substantially pure. EPA: DHA ratios for both samples were derived - for S. longiceps this ratio was 3:2, while it was 3:8 for S. fimbriata.Eight common strains of gram positive and gram negative bacterial strains were subjected to the PUFA extracts from both species dissolved in acetone solution using Agar Well Diffusion method. The activity was studied against an acetone control. At the end of incubation period, zones of inhibition were measured to estimate the activity. Minimum inhibitory concentration for each of the active combinations was calculated by keeping p < 0.01 as significant. Four of the bacteria including multi-resistant Staphylococcus aureus were shown to be inhibited by the fish extracts. It was also found that the extracts from S. fimbriata were better than the one from S. longiceps in annihilating harmful bacteria.Four groups of mice subjects were studied to evaluate the antidiabetic properties of the PUFA extracts. Three groups were induced diabetes by administration of alloxan tetra hydrate. One group without diabetes was kept as control and another with diabetes was kept as diabetic control. For two diabetic groups, a prescribed amount of fish extracts were fed from each of the extracts. The biochemical parameters like serum glucose, total cholesterol, LDL & HDL cholesterol, triglycerides, urea and creatinine were sampled from all four groups at regular intervals of 7 days for a period of 28 days. It was found that groups fed with fish extracts had marked improvement in the levels of total LDL & HDL cholesterol, triglycerides and creatinine. Groups fed with extracts from S. fimbriata seem to have fared better as compared to S. longiceps. However, both groups did not show any marked improvement in blood glucose levels or levels of urea.Cell lines of MCF-7 (Breast Cancer) and DU-145 (Prostate Cancer) were used to analyse the cytotoxicity of the PUFA extracts. Both cell lines were subjected to MTT Assay and later the plates were read using an ELISA reader at a wavelength of 570nm. It was found that both extracts had significant cytotoxic effects against both cell lines and a peak cytotoxicity of 85-90% was apparent. IC50 values were calculated from the graphs and it was found that S. longiceps extracts had a slightly lower IC50 value indicating that it is toxic even at a lower concentration as compared to extracts from S. fimbriata.This study summarizes the bioactivity profile of PUFA extracts and provides recommendation for dietary intake; fish based nutritional industry and indigenous pharmaceutical industry. Possible future directions of this study are also elaborated.
Resumo:
Phenolic resins suffer from the presence of microvoids on curing. This often leads to less than satisfactory properties in the cured resin. This disadvantage has limited the use of phenolic resins to some extent. This study is an attempt to improve the mechanical properties of the phenolic resol resins by chemical modification aimed at reducing the microvoid population. With this end in view various themoset resins synthesised under predetennined conditions have been employed for modifying phenolic resols. Such resins include unsaturated polyester, epoxy and epoxy novolac prepolymers. The results establish the effectiveness of these resins for improving the mechanical properties of phenolics. Experimental and analytical techniques used include FTIR, DMA, TGA, SEM and mechanical property evaluation. While most of the modifier resins employed give positive results the effect of adding UP is found to be surprising as well as impressive.
Resumo:
Latex protein allergy is a serious problem faced by users of natural rubber latex products. This is severe in health care workers, who are constantly using latex products like examination gloves, surgical gloves etc. Out of the total proteins only a small fraction is extractable and only these proteins cause allergic reactions in sensitized people. Enzymic deproteinisation of latex and leaching and chlorination of latex products are the common methods used to reduce the severity of the problem.Enzyme deproteinisation is a cubersome process involving high cost and process loss.Physical properties of such films are poor. Leaching is a lengthy process and in leached latex products presence of extractable proteins is observed on further storing. Chlorination causes yellowing of latex products and reduction in tensile properties.In this context a more simple process of removal of extractable proteins from latex itself was investigated. This thesis reports the application of poly propylene glycol (PPG) to displace extractable proteins from natural latex. PPG is added to 60 % centrifuged natural latex to the extent of 0.2 % m/rn, subssequently diluted to 30 % dry rubber content and again concentrated to obtain a low protein latex.Dilution of concentrated latex and subsequent concentration lead to a total reduction in non - rubber solids in the concentrate, especially proteins and reduction in the ionic concentration in the aqueous phase of the latex. It has been reported that proteins in natural rubber / latex affect its behaviour in the vulcanisation process. Ionic concentration in the aqueous phase of latex influence the stability, viscosity and flow behaviour of natural latex. Hence, a detailed technological evaluation was carried out on this low protein latex. In this study, low protein latex was compared with single centrifuged latex ( the raw material to almost every latex product), double centrifuged latex ( because dilution and second concentration of latex is accompanied by protein removal to some extent and reduction in the ionic concentration of the aqueous phase of latex.). Studies were conducted on Sulphur cure in conventional and EV systems under conditions of post ~ cure and prevulcanisation of latex. Studies were conducted on radiation cure in latex stage. Extractable protein content in vulcanised low protein latex films are observed to be very low. lt is observed that this low protein latex is some what slower curing than single centrifuged latex, but faster than double centrifuged latex. Modulus of low protein latex films were slightly low. In general physical properties of vulcanised low protein latex films are only siightly lower than single centrifuged latex. Ageing properties of the low protein latex films were satisfactory. Viscosity and flow behaviour of low protein latex is much better than double centrifuged latex and almost comparable to single centrifuged latex. On observing that the physical properties and flow behaviour of low protein latex was satisfactory, it was used for the preparation of examination gloves and the gloves were evaluated. It is observed that the properties are conforming to the Indian Standard Specifications. It is thus observed that PPG treatment of natural latex is a simple process of preparing low protein latex. Extractable protein content in these films are very low.The physical properties of the films are comparable to ordinary centrifuged latex and better than conventionally deprotenized latex films. This latex can be used for the production of examination gloves.
Resumo:
The main objective of the study has been to analyse the marketing problems of Indian cardamom at home and abroad and examine possible courses of action which would lead to increased consumption of cardamom, both within India and abroad. This has been done in the context of the anticipated increases in the Indian and world supply of cardamom. Field studies were undertaken to understand the cost of production of cardamom and cost of export. This study was also directed at examining how far price fluctuations in cardamom can be controlled in the Indian context, so as to have a reasonable and stable income for primary producers which will ensure adequate encouragement for higher production and better export earnings.
Resumo:
The distribution of curing agents and fillers in the constituents of an elastomer blend is an important factor which determines the curing behaviour and vulcanizate properties of the blend. The distribution of curatives and fillers largely depends on the nature of elastomers. The curatives tend to migrate preferentially to the rubber of higher unsaturation and/or higher polarity, and reinforcing fillers tend to get distributed in the low viscosity phase, resulting in inferior mechanical properties of the blends. The thesis suggests several methods for improving mechanical properties of blends like NBR/butyl, NR/butyl, NBR/EPDM and NR/.