42 resultados para Coplanar waveguide
Resumo:
A Coplanar waveguide fed compact planar monopole antenna with a modified ground plane is presented. Measured and simulated results reveal that the antenna operates in the Ultra Wide Band with almost constant group delay throughout the band. Developed design equations of the antenna are validated for different substrates. Time domain performance of the antenna is also discussed in order to assess its suitability for impulse radio applications
Resumo:
A compact coplanar waveguide (CPW) fed uniplanar antenna for Quad-band applications is presented. The Quad-band operation is realized by imposing various current paths in a modified T-shaped radiating element. The antenna covers GSM 900, DCS 1800, IEEE802.11.a, IEEE802.11.b and HiperLAN-2 bands and exhibits good radiation characteristics. This low profile antenna has a dimension of 32mm×31mmwhen printed on a substrate of dielectric constant 4.4 and height 1.6mm. Details of design with experimental and simulated results are presented
Resumo:
The propagation of pulse waves in coplanar waveguides (CPWs) is investigated, and these CPWs are assumed to be fabricated on a single -layer low- temperature co-fired ceramic (LTCC) substrate. The input pulse wave can be a Gaussian pulse or a sinusoldally modulated Gaussian pulse. Based on the standard Galerkin 's method in the spectral domain, combined with fast Fourier transform (FFT), the pulse waveform and delay in CPWs are demonstrated and compared for a second plate, oriented orthogonally to the primary planar element, thus producing a crossed planar monopole (CPM), which is simpler to produce and has lower cost than a conical monopole. In this paper, further measurements have been made on this element
Resumo:
Results of exhaustive study of the effect of metallic flanges on H-plane radiation characteristics of V-slot waveguide antenna are presented . It has been established that the beam can be sharpened or broadened by varying the flange angle . The adjustment of the flange angle and flange width would further improve the radiation pattern , yielding optimum efficiency from the flanged system
Loss characterization in rhodamine 6G doped polymer film waveguide by side illumination fluorescence
Resumo:
We report the position dependent tuning of fluorescence emission from rhodamine 6G doped polymethylmethacrylate film waveguide using a side illumination technique. The transmitted fluorescence as a function of the distance from the point of illumination is measured by translating the waveguide horizontally across a monochromatic light source. This technique has been utilized to characterize the optical loss in dye doped waveguides. We observe that the optical loss coefficients for shorter and longer distances of propagation through the dye doped waveguide are different. At longer distance of propagation a decrease in optical loss coefficient is observed
Resumo:
Antennas are indispensable component of any wireless communication device. An antenna is a transducer between the transmitter and the free space waves and vice versa. They efficiently transfer electromagnetic energy from a transmission line into free space. But the present day communication applications require compact and ultra wide band designs which cannot be catered by simple microstrip based designs. PIFAs have solved the problem to some extend, but the field of antennas needs more innovative designs In this thesis the design and development of compact planner antenna are presented. Emphasis is given to the design of the feed as well as the radiator resulting in simple compact uniplanar geometries. The Asymmetric coplanar feed used to excite the antennas is found to be a suitable choice for feeding compact antennas.The main objectives of the study are the design of compact single, dual and multi band antennas with uniplanar structure and extension of the design for practical GSM/WLAN applications and Ultra compact antennas using the above techniques and extension of the design to antennas for practical applications like RFID/DVB-H. All the above objectives are thoroughly studied. Antennas with ultra compact dimensions are obtained as a result of the study. Simple equations are provided to design antennas with the required characteristics. The design equations are verified by designing different antennas for different applications.
Resumo:
Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.
Resumo:
An asymmetric coplanar strip-fed uniplanar antenna for wideband applications is presented. The resulting antenna offers a 2:1 VSWR bandwidth greater than 100% from 1.58 to 5.48 GHz covering the DCS/PCS/IEEE 802.11a/WiMAX bands. The antenna has an overall dimension of 44 × 35 mm2 when printed on a substrate of dielectric constant 4.4 and height 1.6 mm. The design equation is also presented in this article. The antenna exhibits good radiation characteristics and moderate gain in the entire operating band.
Resumo:
The use of a split-ring resonator (SRR)-loaded waveguide for the design of a band-rejection filter with adjustable bandwidth is reported. The width of the stopband can be adjusted by suitably positioning the SRR array in the waveguide. The rejection band can be made very narrow by placing the array at the electric-field minimum. The stopband attenuation depends on the number of unit cells in the array.
Resumo:
The rapid developments in fields such as fibre optic communication engineering and integrated optical electronics have expanded the interest and have increased the expectations about guided wave optics, in which optical waveguides and optical fibres play a central role. The technology of guided wave photonics now plays a role in generating information (guided-wave sensors) and processing information (spectral analysis, analog-to-digital conversion and other optical communication schemes) in addition to its original application of transmitting information (fibre optic communication). Passive and active polymer devices have generated much research interest recently because of the versatility of the fabrication techniques and the potential applications in two important areas – short distant communication network and special functionality optical devices such as amplifiers, switches and sensors. Polymer optical waveguides and fibres are often designed to have large cores with 10-1000 micrometer diameter to facilitate easy connection and splicing. Large diameter polymer optical fibres being less fragile and vastly easier to work with than glass fibres, are attractive in sensing applications. Sensors using commercial plastic optical fibres are based on ideas already used in silica glass sensors, but exploiting the flexible and cost effective nature of the plastic optical fibre for harsh environments and throw-away sensors. In the field of Photonics, considerable attention is centering on the use of polymer waveguides and fibres, as they have a great potential to create all-optical devices. By attaching organic dyes to the polymer system we can incorporate a variety of optical functions. Organic dye doped polymer waveguides and fibres are potential candidates for solid state gain media. High power and high gain optical amplification in organic dye-doped polymer waveguide amplifier is possible due to extremely large emission cross sections of dyes. Also, an extensive choice of organic dye dopants is possible resulting in amplification covering a wide range in the visible region.
Resumo:
A new approach, the multipole theory (MT) method, is presented for the computation of cutoff wavenumbers of waveguides partially filled with dielectric. The MT formulation of the eigenvalue problem of an inhomogeneous waveguide is derived. Representative computational examples, including dielectric-rod-loaded rectangular and double-ridged waveguides, are given to validate the theory, and to demonstrate the degree of its efficiency
Resumo:
An attempt is made to determine the relative power distribution in a step-index parabolic cylindrical waveguide (PCW) with high deformation across the direction of propagation. The guide is assumed to be made of silica. The scalar field approximation is employed for the analysis under which a vanishing refractive-index (RI) difference in the waveguide materials is considered. Further, no approximation for folds- is used in the analytical treatment. Due to the geometry of such waceguides, PCWs lose the well-defined modal discreteness, and a kind of mode bunching is observed instead, which becomes much more prominent in PCWs with high bends. However, with the increase in cross-sectional size, the mode-bunching tendency is slightly reduced. The general expressions for power in the guiding and nonguiding sections are obtained, and the fractional power patterns in all of the sections are presented for PCWs of various cross-sectional dimensions. It is observed that the confinement of power in the core section is increased for PCWs of larger cross-sectional size. Moreover, a fairly uniform distribution of power is seen over the modes having intermediate values of propagation constants
Resumo:
A forward - biased point contact germanium signal diode placed inside a waveguide section along the E -vector is found to introduce significant phase shift of microwave signals . The usefulness of the arrangement as a phase modulator for microwave carriers is demonstrated. While there is a less significant amplitude modulation accompanying phase modulation , the insertion losses are found to be negligible. The observations can be explained on the basis of the capacitance variation of the barrier layer with forward current in the diode
Resumo:
A novel compact wideband antenna for wireless local area network (WLAN) applications in the 2.4 GHz band is presented. The proposed low profile antenna of dimensions 15 x 14.5 x 1.6 mm offers 18.6% bandwidth and an average gain of -5 dBi. The antenna can be excited directly using a 50 coaxial probe
Resumo:
A novel sensing technique for the in situ monitoring of the rate of pulsed laser deposition (PLD) of metal thin films has been developed. This optical fibre based sensor works on the principle of the evanescent wave penetration of waveguide modes into the uncladded portion of a multimode fibre. The utility of this optical fibre sensor is demonstrated in the case of PLD of silver thin films obtained by a Q-switched Nd:YAG laser which is used to irradiate a silver target at the required conditions for the preparation of thin films. This paper describes the performance and characteristics of the sensor and shows how the device can be used as an effective tool for the monitoring of the deposition rate of silver thin films. The fibre optic sensor is very simple, inexpensive and highly sensitive compared with existing techniques for thin film deposition rate measurements