18 resultados para Continuous functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inthis paper,we define partial moments for a univariate continuous random variable. A recurrence relationship for the Pearson curve using the partial moments is established. The interrelationship between the partial moments and other reliability measures such as failure rate, mean residual life function are proved. We also prove some characterization theorems using the partial moments in the context of length biased models and equilibrium distributions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper an attempt has been made to determine the number of Premature Ventricular Contraction (PVC) cycles accurately from a given Electrocardiogram (ECG) using a wavelet constructed from multiple Gaussian functions. It is difficult to assess the ECGs of patients who are continuously monitored over a long period of time. Hence the proposed method of classification will be helpful to doctors to determine the severity of PVC in a patient. Principal Component Analysis (PCA) and a simple classifier have been used in addition to the specially developed wavelet transform. The proposed wavelet has been designed using multiple Gaussian functions which when summed up looks similar to that of a normal ECG. The number of Gaussians used depends on the number of peaks present in a normal ECG. The developed wavelet satisfied all the properties of a traditional continuous wavelet. The new wavelet was optimized using genetic algorithm (GA). ECG records from Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) database have been used for validation. Out of the 8694 ECG cycles used for evaluation, the classification algorithm responded with an accuracy of 97.77%. In order to compare the performance of the new wavelet, classification was also performed using the standard wavelets like morlet, meyer, bior3.9, db5, db3, sym3 and haar. The new wavelet outperforms the rest

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is intended to discuss various properties and reliability aspects of higher order equilibrium distributions in continuous, discrete and multivariate cases, which contribute to the study on equilibrium distributions. At first, we have to study and consolidate the existing literature on equilibrium distributions. For this we need some basic concepts in reliability. These are being discussed in the 2nd chapter, In Chapter 3, some identities connecting the failure rate functions and moments of residual life of the univariate, non-negative continuous equilibrium distributions of higher order and that of the baseline distribution are derived. These identities are then used to characterize the generalized Pareto model, mixture of exponentials and gamma distribution. An approach using the characteristic functions is also discussed with illustrations. Moreover, characterizations of ageing classes using stochastic orders has been discussed. Part of the results of this chapter has been reported in Nair and Preeth (2009). Various properties of equilibrium distributions of non-negative discrete univariate random variables are discussed in Chapter 4. Then some characterizations of the geo- metric, Waring and negative hyper-geometric distributions are presented. Moreover, the ageing properties of the original distribution and nth order equilibrium distribu- tions are compared. Part of the results of this chapter have been reported in Nair, Sankaran and Preeth (2012). Chapter 5 is a continuation of Chapter 4. Here, several conditions, in terms of stochastic orders connecting the baseline and its equilibrium distributions are derived. These conditions can be used to rede_ne certain ageing notions. Then equilibrium distributions of two random variables are compared in terms of various stochastic orders that have implications in reliability applications. In Chapter 6, we make two approaches to de_ne multivariate equilibrium distribu- tions of order n. Then various properties including characterizations of higher order equilibrium distributions are presented. Part of the results of this chapter have been reported in Nair and Preeth (2008). The Thesis is concluded in Chapter 7. A discussion on further studies on equilib- rium distributions is also made in this chapter.