41 resultados para Cathinones (Bath Salts)
Resumo:
In this paper, microstrip lines magnetically coupled to splitring resonators (SRRs) are conquved to electromagnetic bundgup (EBG) nr,rrostrip lines in terns q/ their stop-heard penjbrnmrnce and dimensions. In bath types o/ trunsmis•siou lines, signal propagation is inhibited in it certain jequency bwuL For EBG microstrip lines, the central frequency of such a forbidden band is determined by the period of the structure, whereas in SRR-hased microstrip lines the position of the frequency gap depends on the quasi-static resonant frequency of the rings. The main relevant conrributiun of this paper is to provide a tuning procedure to control the gap width in SRR microstrip lines, and to show that by using SRRs, device dimensions ale much smaller than those required by EBGs in order to obtain similar stop-banal performance. This has been demonstrated by fill-wave electromagnetic simulations and experimentally verified from the characterization ql two fabricated microstrip lines: one with rectangular SRRs etched on the upper substrate side, and the other with a periodic perturbation cf'strip width. For similar rejection and 1-(;H,. gap width centered at 4.5 Gllz, it has been found that the SRR microstrip line is•,fve times shorter. In addition, no ripple is appreciable in the allowed band for the .SRR-hared structure, whereas due to dispersion, certain mismatch is expected in the EBG prototype. Due to the high-frequency selectivity, controllable gap width, and small dimensions, it is believed that SRR coupled to planar transmission lines can have an actual impact on the design of stop-band filters compatible with planar technology, and can be an alternative to present solutions based on distributed approaches or EBG
Resumo:
Toxicity of effluent from a titanium dioxide factory containing sulphuric acid residue with soluble iron metallic salts and insoluble material such as silica, etc. on fishes, decapods and molluscs was studied. The effluent caused changes in pH and oxygen depletion of the sea water. Sublethal effects of the precipitate of ferrous salts were also studied. Dilutions of effluent up to 1:150 were LC100 for all organisms used while 1:200 dilution was LC50 for fishes at 36 hr and for other organisms at 48 hr. But death of organisms at this concentration was caused by pH changes and oxygen depletion and did not account for the effects of the precipitate. Below this level precipitation started soon after mixing with sea water causing death of organisms by choking their gills and siphons. Dilutions,< 1:1000 were 96 hr LCO.
Resumo:
In the present work, structural, optical and electrical properties of indium sulfide are tuned by specific and controlled doping. Silver, tin, copper and chlorine were used as the doping elements. In2S3 thin films for the present study were prepared using a simple and low cost “Chemical Spray Pyrolysis (CSP)” technique. This technique is adaptable for large-area deposition of thin films in any required shape and facilitates easiness of doping and/or variation of atomic ratio. It involves spraying a solution, usually aqueous, containing soluble salts of the constituents of the desired compound onto a heated substrate. Doping process was optimized for different doping concentrations. On optimizing doping conditions, we tuned the structural, optical and electrical properties of indium sulfide thin films making them perform as an ideal buffer layer.
Resumo:
N-alkyl-2,6-dimethyl-4(1H)-pyridinones, salts of 4-dimethylaminopyridine and 2-amino-5-nitropyridine are considered to be potential candidates for nonlinear optical (NLO) applications, in particular for the generation of blue-green laser radiation. Single crystals were grown following the slow evaporation technique at constant temperature. Single-shot laserinduced surface damage thresholds in the range 3–10 GW/cm2 were measured using a 18 ns Q-switched Nd:YAG laser. The surface morphologies of the damaged crystals were examined under an optical microscope and the nature of damage identified. The Vicker’s microhardness was determined at a load of 98.07 mN. The thermal transport properties, thermal diffusivity (α), thermal effusivity (e), thermal conductivity (K) and heat capacity (Cp), of the grown crystals were measured by an improved photopyroelectric technique at room temperature. All the results are presented and discussed.
Resumo:
Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics.
Resumo:
The Setschenow parameter and thermodynamic parameters of transfer of a number of monosubstituted benzoic acids from water to different salt solutions have been reported. The data have been rationalized by considering the structure breaking effects of the ions of the salts, the localised hydrolysis model, the internal pressure theory and Symons' theory of water structure.
Resumo:
Solubilities of 4-nitrobenzoic acid at 25°, 35° and 42°C have been determined in water and in the presence of several concentrations of electrolytes. The free energies, enthalpies and entropies of transfer are also reported. The data have been rationalized by considering the structure-breaking effects of the ions of the salts and the requirement of the localized hydrolysis model. The theory of Symons is not satisfactory to rationalise the experimental data.
Resumo:
The Setschenow parameter and thermodynamic parameters of transfer of 2-, 3- and 4-fluorobenzoic acid from water to salt solution are reported. The data have been rationalized by considering the structure breaking effects of the ions of the salts, the localized hydrolysis model and the internal pressure theory.
Resumo:
The Setschenow parameter and thermodynamic parameters of transfer of 2- and 4- hydroxybenzoic acids from water to salt solutions have been reported. The data have been rationalised by considering the structure breaking effects of the ions of the salts, the localized hydrolysis model, the internal pressure theory and the theory of water structure due to Symons.
Resumo:
The Setschenow parameter and thermodynamic parameters of transfer of 2-, 3-, and 4-methylbenzoic acids from water to salt solutions have been reported. The data have been rationalized by considering the structure breaking effects of the ions of the salts, the localized hydrolysis model, and the internal pressure theory.
Resumo:
The Setschenow parameter and thermodynamic parameters of transfer of 2- and 4-aminobenzoic acids from water to salt solutions have been reported. The results are discussed in terms of the structure- breaking effects of the ions of the salts, the localized hydrolysis model, and the internal pressure theory.
Resumo:
The split-pulse laser method is used to reinvestigate the optical attenuation of distilled water in the region from 430 to 630 nm. The studies are then extended to ionic solutions of NaCl, MgCl2, and Na2SO4, these salts forming the major constituents of seawater. The effect of the concentration of these constituents on optical attenuation is investigated. Further, optical attenuation studies are carried out for the region from 430 to 630 nm for an aqueous solution prepared with all the major constituents in the same proportions as in natural seawater. These values are then compared with values obtained for natural seawater. The relative role of dissolved salts and suspended particles on optical attenuation in seawater is discussed. The lowest attenuation is observed at ~450 nm for all solutions and is found to coincide with that for distilled water.
Resumo:
In the present work, we describe our efforts to develop device quality CuInSe2, films through low cost, simple and eco-friendly hybrid techniques. The most important point to be highlighted here is that the method fully avoids the use of poisonous gases such as H2Se/Se vapour. Instead, selenisation is achieved through solid state reaction between amorphous selenium and polycrystalline metal layers resulting in both binary and ternary selenides. Thin films of amorphous selenium (a-Se) used for this is deposited using Chemical Bath Deposition (CBD). CulnSe2 films are prepared through the selenisation process. Another PV material, indium selenide (In2Se3) thin films are also prepared using this process.
Resumo:
Most tropical aquatic environments are naturally fertile and their natural fertility is renewed very rapidly. Natural food for many cultivable organisms can be grown to the maximum by proper management. However, enrichment of the environment can be done through rational fertilization. Still further increase in stocking rates, can yield increased crop if adequate feeding is done. Thus fish and shellfish nutrition is an important aspect of the multidisciplinary subject of aquaculture. The oldest and most classical studies in physiology have investigated the nutritional needs of the species of interest to aquaculture. The alimentary requirements for proteins, lipids, mineral salts and vitamins have been established for some temperate species. But, the nutritional requirements of only few tropical species have been studied. Before formulating a diet, a thorough knowledge of the nutrient requirement of the species is essential. It is against this background that the present area of investigation has been identified. "Nutritional requirements of the fry of gold-spot mullet Liza parsia" is a comprehensive attempt to quantify the nutritional factors that are essential for producing healthy fingerlings for stocking the farms. Aspects such as the protein and lipid requirements of the fry, the vitamin essentiality, nutritive evaluation of protein and lipid sources suitable for compounding diets were covered in this research project. The ultimate aim has been to evolve practical diets which could be applied in the nursery phase for juvenile production.