31 resultados para Bay of Biscay
Resumo:
The thesis is comprised of seven chapters. Chapter 1 gives a general introduction to marine actinomycetes; Chapter 2 gives an account on the morphological, biochemical and physiological characterization of marine actinomycetes. Comprehensive description of molecular identification and phylogenetic analysis of actinomycetes is dealt with in Chapter 3. The antimicrobial property with special reference to antivibrio activity is described in Chapter 4. Chapter 5 explores the melanin production ability of marine actinomycetes, characterization of melanin and evaluation of its bioactivity. Chapter 6 illustrates the study on chitinolytic Streptomyces as antifungal and insecticidal agents. Summary and Conclusion of the study is presented in Chapter 7, followed by References and Appendices.The present study provides an insight into the various actinomycetes occurring in the sediments of Arabian Sea and Bay of Bengal. Streptomyces was found to be the dominant group followed by Nocardiopsis. Eventhough generic level identification is possible by traditional phenotypic methods, species level identification necessitate a polyphasic approach including both phenotypic and genotypic characterization. Antibiotic production coupled with biogranulation property helped in the effective utilization of the actinomycetes for the control of vibrios. Melanin from Streptomyces bikiniensis was proved to be a promising antioxidant and photoprotectant. Marine actinomycetes were found to be a good source of hydrolytic enzymes and the chitinolytic isolates could be explored as biocontrol agents in terms of antifungal and insecticidal property. The present study explored the potential of marine actinomycetes especially Streptomycetes as a promising source of bioactive molecules for application in aquaculture and pharmaceutical industry.
Resumo:
This study focuses on the onset of southwest monsoon over Kerala. India Meteorological Department (IMD) has been using a semi-objective method to define monsoon onset. The main objectives of the study are to understand the monsoon onset processes, to simulate monsoon onset in a GCM using as input the atmospheric conditions and Sea Surface Temperature, 10 days earlier to the onset, to develop a method for medium range prediction of the date of onset of southwest monsoon over Kerala and to examine the possibility of objectively defining the date of Monsoon Onset over Kerala (MOK). It gives a broad description of regional monsoon systems and monsoon onsets over Asia and Australia. Asian monsoon includes two separate subsystems, Indain monsoon and East Asian monsoon. It is seen from this study that the duration of the different phases of the onset process are dependent on the period of ISO. Based on the study of the monsoon onset process, modeling studies can be done for better understanding of the ocean-atmosphere interaction especially those associated with the warm pool in the Bay of Bengal and the Arabian Sea.
Resumo:
In this thesis, a detailed attempt has been made to understand the general hydrography of the upper 300m of the water column, in the eastern Arabian Sea and the western Bay of Bengal, the two contrasting basins in the northern Indian Ocean, using recently collected data sets of Marine Research-Living Resources (MR-LR) assessment programme, funded by Department of Ocean Development, from various cruises, pertaining to different seasons. Initially it discuss the general hydrography of the west and east coasts of India are covered, in the context of mixed layer processes. The study describes the materials and methods . To compare the hydrography of the AS and BOB, a unique MLD(Mixed Layer Depth) definition for AS and BOB is essential, for which the 275 CTD profiles were used. A comparison has been made among the various MLD criteria with the actual MLD. The monthly evolution of MLD, barrier layer thickness and the role of atmospheric forcing on the dynamics of the mixed layer in the AS and BOB were studied. The general hydrography along the west coast of India is described. The upwelling/downwelling, winter cooling processes, in the context of chemical and biological parameters, are also addressed. Finally the general hydrography of the Bay of Bengal is covered. The most striking feature in the hydrography are the signature of an anticyclonic subtropical gyre during spring intermonsoon and a cold core eddy during winter monsoon. The TTS(Typical Tropical Structure) of the euphotic layer was also investigated.
Resumo:
TRMM Microwave Imager (TMI) is reported to be a useful sensor to measure the atmospheric and oceanic parameters even in cloudy conditions. Vertically integrated specific humidity, Total Precipitable Water (TPW) retrieved from the water vapour absorption channel (22GHz.) along with 10m wind speed and rain rate derived from TMI is used to investigate the moisture variation over North Indian Ocean. Intraseasonal Oscillations (ISO) of TPW during the summer monsoon seasons 1998, 1999, and 2000 over North Indian Ocean is explored using wavelet analysis. The dominant waves in TPW during the monsoon periods and the differences in ISO over Arabian Sea and Bay of Bengal are investigated. The northward propagation of TPW anomaly and its coherence with the coastal rainfall is also studied. For the diagnostic study of heavy rainfall spells over the west coast, the intrusion of TPW over the North Arabian Sea is seen to be a useful tool.
Resumo:
In the present study an attempt has been made to understand the microzooplankton community along the easr coast of India. Most of the earlier studies projected Bay of Bengal as an oligotrophic system where phytoplankton growth is limited by a number of factors among which nutrients are the foremost. Hence it is logical to consider that the most of the primary production in the Bay of Bengal could be contributed by small sized phytoplankton harnessing the available resources, which in turn can be utilized effiency by the microzooplankton only. Hence microzooplankton could play in transferring primary organic carbon to higher tropic levels in this region.
Resumo:
Upwelling regions occupies only a small portion of the global ocean surface. However it accounts for a large fraction of the oceanic primary production as well as fishery. Therefore understanding and quantifying the upwelling is of great importance for the marine resources management. Most of the coastal upwelling zones in the Arabian Sea are wind driven uniform systems. Mesoscale studies along the southwest coast of India have shown high spatial and temporal variability in the forcing mechanism and intensity of upwelling. There exists an equatorward component of wind stress as similar to the most upwelling zones along the eastern oceanic boundaries. Therefore an offshore component of surface Ekman transport is expected throughout the year. But several studies supported with in situ evidences have revealed that the process is purely recurring on seasonal basis. The explanation merely based on local wind forcing alone is not sufficient to support the observations. So, it is assumed that upwelling along the South Eastern Arabian Sea is an effect of basin wide wind forcing rather than local wind forcing. In the present study an integrated approach has been made to understand the process of upwelling of the South Eastern Arabian Sea. The latitudinal and seasonal variations (based on Sea Surface Temperature, wind forcing, Chlorophyll a and primary production), forcing mechanisms (local wind and remote forcing) and the factors influencing the system (Arabian Sea High Saline Water, Bay of Bengal water, runoff, coastal geomorphology) are addressed herewith.
Resumo:
The Andaman-Nicobar Islands in the Bay of Bengal lies in a zone where the Indian plate subducts beneath the Burmese microplate, and therefore forms a belt of frequent earthquakes. Few efforts, not withstanding the available historical and instrumental data were not effectively used before the Mw 9.3 Sumatra-Andaman earthquake to draw any inference on the spatial and temporal distribution of large subduction zone earthquakes in this region. An attempt to constrain the active crustal deformation of the Andaman-Nicobar arc in the background of the December 26, 2004 Great Sumatra-Andaman megathrust earthquake is made here, thereby presenting a unique data set representing the pre-seismic convergence and co-seismic displacement.Understanding the mechanisms of the subduction zone earthquakes is both challenging sCientifically and important for assessing the related earthquake hazards. In many subduction zones, thrust earthquakes may have characteristic patterns in space and time. However, the mechanism of mega events still remains largely unresolved.Large subduction zone earthquakes are usually associated with high amplitude co-seismic deformation above the plate boundary megathrust and the elastic relaxation of the fore-arc. These are expressed as vertical changes in land level with the up-dip part of the rupture surface uplifted and the areas above the down-dip edge subsided. One of the most characteristic pattern associated with the inter-seismic era is that the deformation is in an opposite sense that of co-seismic period.This work was started in 2002 to understand the tectonic deformation along the Andaman-Nicobar arc using seismological, geological and geodetic data. The occurrence of the 2004 megathrust earthquake gave a new dimension to this study, by providing an opportunity to examine the co-seismic deformation associated with the greatest earthquake to have occurred since the advent of Global Positioning System (GPS) and broadband seismometry. The major objectives of this study are to assess the pre-seismic stress regimes, to determine the pre-seismic convergence rate, to analyze and interpret the pattern of co-seismic displacement and slip on various segments and to look out for any possible recurrence interval for megathrust event occurrence for Andaman-Nicobar subduction zone. This thesis is arranged in six chapters with further subdivisions dealing all the above aspects.
Resumo:
This thesis entitled ecology of chaetognaths in the indian EEZ.The present study, in general, deals with the distribution pattern of mesozooplankton biomass and abundance with special reference to the detailed ecology of the important carnivorous planktonic group, the chaetognath, in the two major ocean basins of the Indian EEZ, the Arabian Sea (AS) and the Bay of Bengal (BoB). Prior to the International Indian Ocean expedition (IIOE, 1960 – 1965), cmprehensive studies on chaetognath in the Indian waters were very limited and was confined mostly to some coastal and oceanic regions. The study revealed a profound influence of different physical process on the abundance of chaetognath community. The significant influence exerted by different physico-chemical factors on the vertical distribution of chaetognath species was also evident. Prior to this study, only very little information was available on the ecology and distribution pattern chaetognaths in both the Arabian sea and the Bay of Bengal in relation to various mesoscale processes and physicochemical .variables. This study, emphasizing the short term and long term influences of different meso-scale and basin scale physical events on the ecology of this important plankton group provides the baseline data for extensive ecological research on any major mesozooplankton group in this tropical low latitude region.
Resumo:
Planktonic ostracod of the Indian Ocean have not been studied in detail although extensive studies have been made on them from other oceans, particularly Atlantic. with this view, the present study was undertaken, to throw; some light on the systematics and distribution oi’ planktonic ostracods in this region, This study provides iniormation regarding the distribution or each species in the Northern Indian Ocean, specially in the Bay of Bengal which is the least explored, as far as planlctunio ostracods are concerned. It may also furnish us with the data regarding the nature of ostracod production in this area, which directly reflects on the total productivity as they play an important role in the rapid recycling or organic substances, iaecal pellets and even flocculants In the present study the main objectives are; (1) Proper detemination of the species or planktonic Ostraooda that occur in the area or investigation, (2) to explain the pattern oi’ distribution, (3) to estimate their abundance and to some extent seasonal variation, and (4) to correlate their distribution with the physics-chemical factors of the environment
Resumo:
Motivation for the present study is to improve the scienti c understanding on the prominent gap areas in the average three-dimensional distribution of clouds and their impact on the energetics of the earth-atmosphere system. This study is focused on the Indian subcontinent and the surrounding oceans bound within the latitude-longitude bands of 30 S to 30 N and 30 E to 110 E. Main objectives of this study are to : (i) estimate the monthly and seasonal mean vertical distributions of clouds and their spatial variations (which provide the monthly and seasonal mean 3-dimensional distributions of clouds) using multi-year satellite data and investigate their association with the general circulation of the atmosphere, (ii) investigate the characteristics of the `pool of inhibited cloudiness' that appear over the southwest Bay of Bengal during the Asian summer monsoon season (revealed by the 3-dimensional distribution of clouds) and identify the potential mechanisms for its genesis, (iii) investigate the role of SST and atmospheric thermo-dynamical parameters in regulating the vertical development and distribution of clouds, (iv) investigate the vertical distribution of tropical cirrus clouds and their descending nature using lidar observations at Thiruvananthapuram (8.5 N, 77 E), a tropical coastal station at the southwest Peninsular India, and (v) assessment of the impact of clouds on the energetics of the earth-atmosphere system, by estimating the regional seasonal mean cloud radiative forcing at top-of-the-atmosphere (TOA) and latent heating of the atmosphere by precipitating clouds using satellite data
Resumo:
Numerous low - pressure systems form in the Arabian Sea and Bay of Bengal. These low-pressure systems are highly useful in bringing the rainfall over the Indian sub continent. The developments of these systems are accompanied by the reduction in air temperature and an increase in atmospheric humidity. The radio refractivity, which is a function of the atmospheric pressure, temperature and humidity, also changes following the development of these systems. Variation of radio refractive index and its vertical gradient are analysed for many low pressure systems formed over the Arabian Sea and Bay of Bengal. It is found that the atmosphere becomes super refractive associated with the formation of these systems, caused by the increase in humidity and decrease in temperature. The maximum gradient is observed near the surface layers, especially in the lowest 1 km. Super refraction leads to increased radar detection range and extension of radio horizon
Resumo:
The thesis describes the importance of Indian EEZ, definition and the various factors affecting primary production, general account of phytoplankton and its importance in marine ecosystem etc. In review of literature, general oceanography of Arabian Sea and Bay of Bengal and hydrography of eastern Arabian Sea and western Bay of Bengal. It deals with the distribution patterns of primary production, chlorophyll a, phytoplankton composition and particulate organic carbon in the eastern Arabian Sea and western Bay of Bengal during different seasons. Factors that affect primary productivity are irradiance, temperature, stability of the surface waters, nutrients and zooplankton grazing. The differential biological response of eastern Arabian Sea and western Bay of Bengal to monsoonal regimes. A precise estimation on the primary production of the entire EEZ of India on a regional basis and on a seasonal scale would be the only way to achieve any kind of predictive assessment on the fish stock and their sustainable yield. This study mainly envisages the qualitative and quantitative aspects on the magnitude of phytoplankton standing crop and production of organic carbon and their relationship to environmental characteristics during summer monsoon, Inter monsoon and winter monsoon periods in the east and west coasts of the Indian EEZ.This study revealed that the seasonality exerts a great impact on the biological production in the eastern Arabian Sea and western Bay of Bengal. High biological production may be the reason why most of the fish landings are Concentrated in the west coast of India than east coast. The present data on Phytoplankton production rate and the species composition will provide a meaningful ground for evaluations of exploitable renewable resources of the IndianEEZ
Resumo:
In the present study the availability of satellite altimeter sea level data with good spatial and temporal resolution is explored to describe and understand circulation of the tropical Indian Ocean. The derived geostrophic circulations showed large variability in all scales. The seasonal cycle described using monthly climatology generated using 12 years SSH data from 1993 to 2004 revealed several new aspects of tropical Indian Ocean circulation. The interannual variability presented in this study using monthly means of SSH data for 12 years have shown large year-to-year variability. The EOF analysis has shown the influence of several periodic signals in the annual and interannual scales where the relative strengths of the signals also varied from year to year. Since one of the reasons for this kind of variability in circulation is the presence of planetary waves. This study discussed the influence of such waves on circulation by presenting two cases one in the Arabian Sea and other in the Bay of Bengal.
Resumo:
The present study on upper ocean responses to atmospheric forcing (associated with cyclone passage) in North Indian Ocean revealed significant variability between AS and BoB. The analysis of cyclone frequency during 1947 to 2006 exhibited lesser frequency of cyclones in AS than that of BoB. The analysis also revealed significant reduction in cyclone frequency after the year 1976 with substantial reduction during monsoon season. The long term SST data at selected points in AS and BoB could not reveal any relation with reduction in cyclone frequency. However the SLP at same locations exhibited considerable increase during mid 1970’s, which could have contributed to the observed reduction in cyclone frequency after the year 1976.The response in waves during cyclone passage exhibited significant asymmetry on either side of the track in AS and BoB and the response is observed at 100’s of kilometers away from the track. The significant clockwise rotation in wave direction is observed on the right side of the track starting from near the track to far away locations, which existed for a longer duration. However, the anticlockwise rotation in wave direction is observed over a shorter distance on the left side of the track and dissipated immediately.Inertial oscillation is observed in surface current and in the mixed layer temperature associated with cyclone passage, which revealed the role of relative location(s) on either side of the track. The inertial peak closer to the local inertial period indicates maximum transfer of energy during the cyclone passage in both AS and BoB. The absence of strong inertial oscillation even with clockwise rotation in surface current and wind indicates the dominant role of duration of strong wind in generating inertial oscillation.The oceanic response associated with cyclone passage reveal the variable response(s) which depends on cyclone intensity, the proximity to track and cyclone translation speed. It is observed that resonance with wind generates higher response in surface current, wave and SST on the right side of the track and it lasts for a longer duration. The maximum oceanic response is observed at a few kilometers away on right side of the track. However lesser rightward bias in the location of maximum cooling is observed for cyclones with low cyclone translation speed. The response on the left side of the track is less and is limited over a shorter distance and dissipates immediately. It is observed that the ocean response, in general, increases with intensity of cyclones. However the differential cooling produced by the same intensity cyclones in AS and in BoB indicates the dominant role of low cyclone translation speed in oceanic response.The surface cooling exhibited strikingly differential responses between AS and BoB. The TMI-SST and buoy observations exhibited significant cooling for a longer duration in AS compared to that of BoB. The spatial extent of cooling is also much higher in AS than that of BoB. The wide spread cooling associated with cyclone passage in AS indicates the dominant role of thermal structure in oceanic response in AS than that of BoB.
Resumo:
The present study brings out the influence of transport dynamics on the aerosol distribution over the Indian region at a few selected geographically distinct locations. Over the Bay of Bengal the dominant pathway of aerosol transport during the pre-monsoon period is through higher altitudes (~ 3 km); directed from the Indian main land. In contrast, the aerosol pathways over the Arabian Sea during the same period are quite complex. They are directed from geographically different environments around the ocean through different altitudes. However in general, the day-to-day variability of AOD at both these regions is significantly influenced by the features of atmospheric circulation especially, the wind convergence at higher altitudes (around 3 km). Over the Ganga Basin during the winter period, the wind convergence at lower altitudes (< I km) govems the shon term variations in AOD, while the mean AOD distribution at this location is mainly governed by the local anthropogenic sources.