30 resultados para Autotrophic Nitrogen-removal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common and conventional method for removing turbidity from water is by coagulating with alum or iron salts, and settling the precipitate in suitably designed clarifiers followed by filtration. But the sludge produced is bulky, difficult to dewater and accumulates in the dumping grounds causing environmental problems. Synthetic polymers such as polyacrylamide and polyethyleneoxide have been investigated for their ability to remove turbidity. They overcome many of the disadvantages of conventional methods, but are cost—effective only when rapid flocculation and reduction in sludge volume are demanded. Considering the aforementioned situation, it was felt that more easily available and eco-friendly materials must be developed for removing turbidity from water. The results of our studies in this direction are presented in this thesis. The thesis comprises of nine chapters, with a common bibliography at the end. Chapter 1 gives an introduction to the nature of turbidity and colour usually present in water. Chapter 2 discusses the nature and availability of the principal material used in these studies, namely chitosan. Chapters 3 to 8, which deal with the actual experimental work, are further subdivided into (a) introduction, (b) materials and methods, (c) results and discussion and (d) conclusions. Chapter 9 summarises the entire work so as to put the results and conclusions into proper perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrification is the biological oxidation of ammonium, first to nitrite and then to nitrate by two groups of aerobic, chemolithotrophic bacteria belonging to the family Nitrobacteriaceae. The biological nitrification in municipal wastewater treatment is important in those cases were ammonia removal requirement specially exist. In a trickling filter or in an activated sludge system nitrification is rate limiting and thus necessitates longer detention time. The combined carbon oxidation-nitrification processes generally have low population of nitrifiers due to a high ratio of BOD to total nitrogen in the effluent. This necessitates, separate carbon and nitrogen oxidation processes, which thus minimizes wash out ofthe nitrifiers. Therefore, a separate stage nitrification has become essential to achieve faster and efficient removal of ammonia from the wastewater. The present work deals with the development of bio reactor for nitrifying of sewage as the tertiary process so that the treated wastewater can be used for irrigation, algal culture or fish culture

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquaculture is one of the fastest growing food sectors in the world. Amongst the various branches of aquaculture, shrimp culture has expanded rapidly across the globe because of its faster growth rate, short culture period, high export value and demand in the International market. Indian shrimp farming has experienced phenomenal development over the decades due to its excellent commercial viability. Farmers have adopted a number of innovative technologies to improve the production and to maximize the returns per unit area. The culture methods adopted can be classified in to extensive, modified extensive and semi intensive based on the management strategies adopted in terms of pond size, stocking density, feeding and environmental control. In all these systems water exchanges through the natural tidal effects, or pump fed either from creek or from estuaries is a common practice. In all the cases, the systems are prone to epizootics due to the pathogen introduction through the incoming water, either brought by vectors, reservoir hosts, infected tissue debris and free pathogens themselves. In this scenario, measures to prevent the introduction of pathogen have become a necessity to protect the crop from the onslaught of diseases as well as to prevent the discharge of waste water in to the culture environment.The present thesis deals with Standardization of bioremediation technology for zero water exchange shrimp culture system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is mainly concéntrated on the visible fluorescence of Ho3+ ,nd 3+ and Er 3+rare earths in alkaline earth fluoride hosts(caF2,srF2,BaF2) using a nitrogen laser excitation. A nitrogen laser was fabricated and its parametric studies were first carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser engineering is an area in which developments in the existing design concepts and technology appear at an alarming rate. Now—a-days, emphasis has shifted from innovation to cost reduction and system improvement. To a major extent, these studies are aimed at attaining larger power densities, higher system efficiency and identification of new lasing media and new lasing wavelengths. Todate researchers have put to use all the ditferent Forms of matter as lasing material. Laser action was observed For the first time in a gaseous system - the He-Ne system. This was Followed by a variety of solidstate and gas laser systems. Uarious organic dyes dissolved in suitable solvents were found to lase when pumped optically. Broad band emission characteristics of these dye molecules made wavelength tuning possible using optical devices. Laser action was also observed in certain p-n junctions of semiconductor materials and some of these systems are also tunable. The recent addition to this list was the observation of laser action from certain laser produced plasmas. The purpose of this investigation was to examine the design and Fabrication techniques of pulsed Nitrogen lasers and high power Nd: Glass laserso Attempt was also made to put the systems developed into certain related experiments

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To develop a new medium for enhanced production of biomass of an aquaculture probiotic Pseudomonas MCCB 103 and its antagonistic phenazine compound, pyocyanin. Methods and Results: Carbon and nitrogen sources and growth factors, such as amino acids and vitamins, were screened initially in a mineral medium for the biomass and antagonistic compound of Pseudomonas MCCB 103. The selected ingredients were further optimized using a full-factorial central composite design of the response surface methodology. The medium optimized as per the model for biomass contained mannitol (20 g l)1), glycerol (20 g l)1), sodium chloride (5 g l)1), urea (3Æ3 g l)1) and mineral salts solution (20 ml l)1), and the one optimized for the antagonistic compound contained mannitol (2 g l)1), glycerol (20 g l)1), sodium chloride (5Æ1 g l)1), urea (3Æ6 g l)1) and mineral salts solution (20 ml l)1). Subsequently, the model was validated experimentally with a biomass increase by 19% and fivefold increase of the antagonistic compound. Conclusion: Significant increase in the biomass and antagonistic compound production could be obtained in the new media. Significance and Impact of the Study: Media formulation and optimization are the primary steps involved in bioprocess technology, an attempt not made so far in the production of aquaculture probiotics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A packed bed bioreactor (PBBR) was developed for rapid establishment of nitrification in brackish water hatchery systems in the tropics. The reactors were activated by immobilizing ammonia-oxidizing (AMONPCU- 1) and nitrite-oxidizing (NIONPCU-1) bacterial consortia on polystyrene and low-density polyethylene beads, respectively. Fluorescence in situ hybridization demonstrated the presence of autotrophic nitrifiers belong to Nitrosococcus mobilis, lineage of b ammonia oxidizers and nitrite oxidizer Nitrobacter sp. in the consortia. The activated reactors upon integration to the hatchery system resulted in significant ammonia removal (P\0.01) culminating to its undetectable levels. Consequently, a significantly higher percent survival of larvae was observed in the larval production systems. With spent water the reactors could establish nitrification with high percentage removal of ammonia (78%), nitrite (79%) and BOD (56%) within 7 days of initiation of the process. PBBR is configured in such a way to minimize the energy requirements for continuous operation by limiting the energy inputs to a single stage pumping of water and aeration to the aeration cells. The PBBR shall enable hatchery systems to operate under closed recirculating mode and pave the way for better water management in the aquaculture industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A packed bed bioreactor (PBBR) activated with an indigenous nitrifying bacterial consortia was developed and commercialized for rapid establishment of nitrification in brackish water and marine hatchery systems in the tropics. The present study evaluated nitrification in PBBR integrated into a Penaeus monodon recirculating maturation system under different substrate concentrations and flow rates. RESULTS:Instantnitrificationwasobservedafter integration ofPBBRinto thematuration system.TANandNO2-Nconcentrations were always maintained below0.5 mg L−1 during operation. The TANandNO2-N removalwas significant (P < 0.001) in all the six reactor compartments of the PBBR having the substrates at initial concentrations of 2, 5 and 10 mg L−1. The average volumetric TAN removal rates increased with flow rates from 43.51 (250 L h−1) to 130.44 (2500 L h−1) gTAN m−3 day−1 (P < 0.05). FISH analysis of the biofilms after 70 days of operation gave positive results with probes NSO 190 ((β ammonia oxidizers), NsV 443 (Nitrosospira spp.) NEU (halophilic Nitrosomonas), Ntspa 712 (Phylum Nitrospira) indicating stability of the consortia. CONCLUSION: The PBBR integrated into the P. monodon maturation system exhibited significant nitrification upon operation for 70 days as well as at different substrate concentrations and flow rates. This system can easily be integrated into marine and brackish water aquaculture systems, to establish instantaneous nitrification

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rays, belonging to the class Elasmobranchii, constitute a major fishery in many states in India like Tamil Nadu, Gujarat, Andhra Pradesh, Kerala and Maharashtra. The estimated landings are 21,700 tonnes per annum. Even though the meat of rays is nutritious and free from bones and spines, there is little demand for fresh meat due to the presence of a high urea content. The landings are mainly used for salt curing which fetches only very low prices for the producers. Urea nitrogen constituted the major component (50.8%) of the non-protein nitrogen of the meat. An attempt has been made to standat-dize the processing steps to reduce the urea levels in the meat before freezing by using different simple techniques like dipping the fillets in stagnant chilled water, dipping in chilled running water and dipping in stirred chilled running water. It was found that meat dipped in stirred running water for two hours reduced the urea level of the meat by 62%. The yield of the lateral fin fillets and caudal fin fillets vary with the size of the ray. The drip loss during frozen storage is found to be more in the case of samples frozen stored after the treatment for urea removal by the method of stirring in running water. The samples treated in stagnant chilled water had the lowest drip loss. The total nitrogen was higher in samples treated in stagnant chilled water and lowest in the samples treated in stirred running water. The overall acceptability was high in the case of samples treated with stirred running water and frozen stored

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive filter is a primary method to filter Electrocardiogram (ECG), because it does not need the signal statistical characteristics. In this paper, an adaptive filtering technique for denoising the ECG based on Genetic Algorithm (GA) tuned Sign-Data Least Mean Square (SD-LMS) algorithm is proposed. This technique minimizes the mean-squared error between the primary input, which is a noisy ECG, and a reference input which can be either noise that is correlated in some way with the noise in the primary input or a signal that is correlated only with ECG in the primary input. Noise is used as the reference signal in this work. The algorithm was applied to the records from the MIT -BIH Arrhythmia database for removing the baseline wander and 60Hz power line interference. The proposed algorithm gave an average signal to noise ratio improvement of 10.75 dB for baseline wander and 24.26 dB for power line interference which is better than the previous reported works

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fertility of the coastal and estuarine waters is of great concern because of its influence on the productivity of these waters. Seasonal variations in the distribution of organic carbon, total nitrogen and total phosphorus in the sediments of Kuttanad Waters, a part of the tropical Cochin Estuary on the south west coast of India, are examined to identify the contribution of sediments to the fertility of the aquatic systems. The adjoining region has considerable agricultural activity. The fresh water zones had higher quantities of silt and clay whereas the estuarine zone was more sandy. Organic carbon, total phosphorus and total nitrogen were higher in the fresh water zones and lower in the estuarine zones. Total phosphorus and organic carbon showed the lowest values during monsoon periods. No significant trends were observed in the seasonal distributions of total nitrogen. Ratios of C/N, C/P and N/P, and the phosphorus and nitrogen content indicate significant modification in the character of the organic matter. Substantial amounts of the organic matter can contribute to reducing conditions and modify diagenetic processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of three important dissolved forms of nitrogen, viz. nitrate, nitrite and urea in the surface and bottom water samples collected from 27 selected hydrographic profiles, in the Arabian Sea, along the west coast of India is described. Of the three forms, nitrate concentrations were the highest and comparatively higher concentrations were observed in the bottom water. Decomposition of organic matter resulting in the release of the thermodynamically stable nitrogen species, i.e. nitrate, may be the major factor resulting in higher nitrate concentrations at these depths, where the water is also characterized by low values of dissolved oxygen and temperature. The significant positive correlation between A.O.U. and nitrate of the bottom water samples emphasizes the role of oxidative decomposition of organic matter which plays an active role in reducing the oxygen concentrations below the theoretical values since at this depth ( 200 m) the net production is taken to be zero. This is also evidenced by the negative correlation of nitrate with dissolved oxygen and temperature, for the bottom samples

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a novel improved technology could be developed to convert the recalcitrant coir pith into environmental friendly organic manure. The standard method of composting involves the substitution of urea with nitrogen fixing bacteria viz. Azotobacter vinelandii and Azospirillum brasilense leading to the development of an improved method of coir pith. The combined action of the microorganisms could enhance the biodegradation of coir pith. In the present study, Pleurotus sajor caju, an edible mushroom which has the ability to degrade coir pith, and the addition of nitrogen fixing bacteria like Azotobacter vinelandii and Azospirillum brasilense could accelerate the action of the fungi on coir pith. The use of these microorganisms brings about definite changes in the NPK, Ammonia, Organic Carbon and Lignin contents in coir pith. This study will encourage the use of biodegraded coir pith as organic manure for agri/horti purpose to get better yields and can serve as a better technology to solve the problem of accumulated coir pith in coir based industries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pollution of water with pesticides has become a threat to the man, material and environment. The pesticides released to the environment reach the water bodies through run off. Industrial wastewater from pesticide manufacturing industries contains pesticides at higher concentration and hence a major source of water pollution. Pesticides create a lot of health and environmental hazards which include diseases like cancer, liver and kidney disorders, reproductive disorders, fatal death, birth defects etc. Conventional wastewater treatment plants based on biological treatment are not efficient to remove these compounds to the desired level. Most of the pesticides are phyto-toxic i.e., they kill the microorganism responsible for the degradation and are recalcitrant in nature. Advanced oxidation process (AOP) is a class of oxidation techniques where hydroxyl radicals are employed for oxidation of pollutants. AOPs have the ability to totally mineralise the organic pollutants to CO2 and water. Different methods are employed for the generation of hydroxyl radicals in AOP systems. Acetamiprid is a neonicotinoid insecticide widely used to control sucking type insects on crops such as leafy vegetables, citrus fruits, pome fruits, grapes, cotton, ornamental flowers. It is now recommended as a substitute for organophosphorous pesticides. Since its use is increasing, its presence is increasingly found in the environment. It has high water solubility and is not easily biodegradable. It has the potential to pollute surface and ground waters. Here, the use of AOPs for the removal of acetamiprid from wastewater has been investigated. Five methods were selected for the study based on literature survey and preliminary experiments conducted. Fenton process, UV treatment, UV/ H2O2 process, photo-Fenton and photocatalysis using TiO2 were selected for study. Undoped TiO2 and TiO2 doped with Cu and Fe were prepared by sol-gel method. Characterisation of the prepared catalysts was done by X-ray diffraction, scanning electron microscope, differential thermal analysis and thermogravimetric analysis. Influence of major operating parameters on the removal of acetamiprid has been investigated. All the experiments were designed using central compoiste design (CCD) of response surface methodology (RSM). Model equations were developed for Fenton, UV/ H2O2, photo-Fenton and photocatalysis for predicting acetamiprid removal and total organic carbon (TOC) removal for different operating conditions. Quality of the models were analysed by statistical methods. Experimental validations were also done to confirm the quality of the models. Optimum conditions obtained by experiment were verified with that obtained using response optimiser. Fenton Process is the simplest and oldest AOP where hydrogen peroxide and iron are employed for the generation of hydroxyl radicals. Influence of H2O2 and Fe2+ on the acetamiprid removal and TOC removal by Fenton process were investigated and it was found that removal increases with increase in H2O2 and Fe2+ concentration. At an initial concentration of 50 mg/L acetamiprid, 200 mg/L H2O2 and 20 mg/L Fe2+ at pH 3 was found to be optimum for acetamiprid removal. For UV treatment effect of pH was studied and it was found that pH has not much effect on the removal rate. Addition of H2O2 to UV process increased the removal rate because of the hydroxyl radical formation due to photolyis of H2O2. An H2O2 concentration of 110 mg/L at pH 6 was found to be optimum for acetamiprid removal. With photo-Fenton drastic reduction in the treatment time was observed with 10 times reduction in the amount of reagents required. H2O2 concentration of 20 mg/L and Fe2+ concentration of 2 mg/L was found to be optimum at pH 3. With TiO2 photocatalysis improvement in the removal rate was noticed compared to UV treatment. Effect of Cu and Fe doping on the photocatalytic activity under UV light was studied and it was observed that Cu doping enhanced the removal rate slightly while Fe doping has decreased the removal rate. Maximum acetamiprid removal was observed for an optimum catalyst loading of 1000 mg/L and Cu concentration of 1 wt%. It was noticed that mineralisation efficiency of the processes is low compared to acetamiprid removal efficiency. This may be due to the presence of stable intermediate compounds formed during degradation Kinetic studies were conducted for all the treatment processes and it was found that all processes follow pseudo-first order kinetics. Kinetic constants were found out from the experimental data for all the processes and half lives were calculated. The rate of reaction was in the order, photo- Fenton>UV/ H2O2>Fenton> TiO2 photocatalysis>UV. Operating cost was calculated for the processes and it was found that photo-Fenton removes the acetamiprid at lowest operating cost in lesser time. A kinetic model was developed for photo-Fenton process using the elementary reaction data and mass balance equations for the species involved in the process. Variation of acetamiprid concentration with time for different H2O2 and Fe2+ concentration at pH 3 can be found out using this model. The model was validated by comparing the simulated concentration profiles with that obtained from experiments. This study established the viability of the selected AOPs for the removal of acetamiprid from wastewater. Of the studied AOPs photo- Fenton gives the highest removal efficiency with lowest operating cost within shortest time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term ‘water pollution’ broadly refers to the contamination of water and water bodies (e.g. lakes, rivers, oceans, groundwater etc). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove the harmful contaminants. This affects not only the plants and organisms living in these bodies of water but also the entire natural biological communities and the biodiversity.Advanced Oxidation Processes (AOPs) have been tested as environment-friendly techniques for the treatment of contaminated water, in view of their ability to convert pollutants into harmless end products. These techniques refer to a set of treatment procedures designed to remove organic or inorganic contaminants in wastewater by oxidation. The contaminants are oxidized by different reagents such as air, oxygen, ozone, and hydrogen peroxide which are introduced in precise, preprogrammed dosages, sequences and combinations under appropriate conditions. The procedure when combined with light in presence of catalyst is known as photocatalysis. When ultrasound (US) is used as the energy source, the process is referred as sonication. Sonication in presence of catalyst is referred as sonocatalysis. Of late, combination of light and sound as energy sources has been tested for the decontamination of wastewater in the presence of suitable catalyst. In this case, the process is referred as sonophotocatalysis. These AOPs are specially advantageous in pollution control and waste water treatment because unlike many other technologies, they do not just transfer the pollutant from one phase to another but completely degrade them into innocuous substances such as CO2 and H2O.