22 resultados para Amorphous Semiconductors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis Entitled Electrical switching studies on the thin flims of polyfuran and polyacrylonitrile prepared by plasma polymerisation and vacuum evaporated amorphous silicon.A general introduction to the switching and allied phenomena is presented. Subsequently, developments of switching in thin films are described. The Mott transition is qualitatively presented. The working of a switching transitor is outlined and compared to the switching observed in thin films. Characteristic parameters of switching such as threshold voltage, time response to a, voltage pulse, and delay time are described. The various switching configurations commonly used are discussed. The mechanisms used to explain the switching behaviour like thermal, electrothermal and purely electronic are reviewed. Finally the scope, feasibility and the importance of polymer thin films in switching are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brief account of the several methods used for the production of thin films is presented in this Chapter. The discussions stress on the important methods used for the fabrication of a-si:H thin films. This review' also reveals ‘that almost all the general methods, like vacuum evaporation, sputtering, glow discharge and even chemical methods are currently employed for the production of a-Si:H thin films. Each method has its own advantages and disadvantages. However, certain methods are generally preferred. Subsequently a detailed account of the method used here for the preparation of amorphous silicon thin films and their hydrogenation is presented. The metal chamber used for the electrical and dielectric measurements is also described. A brief mention is made-on the electrode structure, film area and film geometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fe–Ni based amorphous thin films were prepared by thermal evaporation. These films were irradiated by 108 MeV Ag8+ ions at room temperature with fluences ranging from 1 1012 to 3 1013 ions/cm2 using a 15 UD Pelletron accelerator. Glancing angle x-ray diffraction studies showed that the irradiated films retain their amorphous nature. The topographical evolution of the films under swift heavy ion SHI bombardment was probed using atomic force microscope and it was noticed that surface roughening was taking place with ion beam irradiation. Magnetic measurements using a vibrating sample magnetometer showed that the coercivity of the films increases with an increase in the ion fluence. The observed coercivity changes are correlated with topographical evolution of the films under SHI irradiation. The ability to modify the magnetic properties via SHI irradiation could be utilized for applications in thin film magnetism

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of Fe–Ni based amorphous nanocolumns has been studied using atomic force microscopy. The root mean square roughness of the film surface increased with the deposition time but showed a little change at higher deposition time. It was found that the separation between the nanostructures increased sharply during the initial stages of growth and the change was less pronounced at higher deposition time. During the initial stages of the column growth, a roughening process due to self shadowing is dominant and, as the deposition time increases, a smoothening mechanism takes place due to the surface diffusion of adatoms

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the influence of substrate surface roughness on the structural and magnetic properties of obliquely deposited amorphous nanocolumns of Fe–Ni. Experiments showed that the surface roughness of the substrate greatly determines the morphology of the columnar structures and this in turn has a profound influence on the magnetic properties. Nucleation of Fe–Ni nanocolumns on a smooth silicon substrate was at random, while that on a rough glass substrate was defined by the irregularities on the substrate surface. It has been found that magnetic interaction between the nanocolumns prepared on a silicon substrate was due to their small inter-column separation. Well separated nanocolumns on a glass substrate resulted in exchange isolated magnetic domains. The size, shape and the distribution of nanocolumns can be tailored by appropriately choosing the surface roughness of the substrate. This will find potential applications in thin film magnetism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic properties of amorphous Fe–Ni–B based metallic glass nanostructures were investigated. The nanostructures underwent a spin-glass transition at temperatures below 100 K and revealed an irreversible temperature following the linear de Almeida–Thouless dependence. When the nanostructures were cooled below 25 K in a magnetic field, they exhibited an exchange bias effect with enhanced coercivity. The observed onset of exchange bias is associated with the coexistence of the spin-glass phase along with the appearance of another spin-glass phase formed by oxidation of the structurally disordered surface layer, displaying a distinct training effect and cooling field dependence. The latter showed a maximum in exchange bias field and coercivity, which is probably due to competing multiple equivalent spin configurations at the boundary between the two spin-glass phases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effects of swift heavy ion irradiation on thermally evaporated 44 nm thick, amorphous Co77Fe23 thin films on silicon substrates using 100 MeV Ag7+ ions fluences of 1 1011 ions/ cm2, 1 1012 ions/cm2, 1 1013 ions/cm2, and 3 1013 ions/cm2. The structural modifications upon swift heavy irradiation were investigated using glancing angle X-ray diffraction. The surface morphological evolution of thin film with irradiation was studied using Atomic Force Microscopy. Power spectral density analysis was used to correlate the roughness variation with structural modifications investigated using X-ray diffraction. Magnetic measurements were carried out using vibrating sample magnetometry and the observed variation in coercivity of the irradiated films is explained on the basis of stress relaxation. Magnetic force microscopy images are subjected to analysis using the scanning probe image processor software. These results are in agreement with the results obtained using vibrating sample magnetometry. The magnetic and structural properties are correlated