23 resultados para Algae aggregate, size
Resumo:
Total biochemical composition of freshwater major carps, Labeo rohita -(r9hu); Catla catla (catla); Cirrltinus tnrigala (mrigal), in relation to size was evaluated . The water soluble nitrogen fraction constituted about 21% of the tota l nitro gen . Salt so luble fraction constituted 55 - 60% of the total nitrogen. Non-protein nitrogen represented 12% of the total nit rogen in all the cases except mri gal of small size (9.36%). The insoluble connec tive tissu e contributed to 2-3 per cent of tota l nitrogen . The monounsaturated fatty acid s (MUFA) formed 31-39% of the total fatty acids and 60-68% of the MUFA in freshwat er carps was CI 8:1. The esse ntial amino acids contributed to 41 to 51% of the total amino acid s in freshwater major carps. Arom atic amino acid content was sligh tly higher compared to marine fishe s while the proportion of proline was less. Varia tions in compos ition in rela tion to size are discu ssed . The autolytic activi ty was significantly higher in small fish in all the three species
Resumo:
Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.
Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders
Resumo:
Nanoparticles of nickel ferrite have been synthesized by the sol–gel method and the effect of grain size on its structural and magnetic properties have been studied in detail. X-ray diffraction (XRD) studies revealed that all the samples are single phasic possessing the inverse spinel structure. Grain size of the sol–gel synthesized powders has been determined from the XRD data and the strain graph. A grain size of 9 nm was observed for the as prepared powders of NiFe2O4 obtained through the sol–gel method. It was also observed that strain was induced during the firing process. Magnetization measurements have been carried out on all the samples prepared in the present series. It was found that the specific magnetization of the nanosized NiFe2O4 powders was lower than that of the corresponding coarse-grained counterparts and decreased with a decrease in grain size. The coercivity of the sol–gel synthesized NiFe2O4 nanoparticles attained a maximum value when the grain size was 15nm and then decreased as the grain size was increased further.
Resumo:
Fine particles of cobalt ferrite were synthesized by the sol–gel method. Subsequent heat treatment at different temperatures yielded cobalt ferrites having different grain sizes. X-ray diffraction studies were carried out to elucidate the structure of all the samples. Dielectric permittivity and ac conductivity of all the samples were evaluated as a function of frequency, temperature and grain size. The variation of permittivity and ac conductivity with frequency reveals that the dispersion is due to Maxwell–Wagner type interfacial polarization in general, with a noted variation from the expected behaviour for the cold synthesized samples. High permittivity and conductivity for small grains were explained on the basis of the correlated barrier-hopping model
Resumo:
Silver silica nanocomposites were obtained by the sol–gel technique using tetraethyl orthosilicate (TEOS) and silver nitrate (AgNO3) as precursors. The silver nitrate concentration was varied for obtaining composites with different nanoparticle sizes. The structural and microstructural properties were determined by x-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). X-ray photoelectron spectroscopic (XPS) studies were done for determining the chemical states of silver in the silica matrix. For the lowest AgNO3 concentration, monodispersed and spherical Ag crystallites, with an average diameter of 5 nm, were obtained. Grain growth and an increase in size distribution was observed for higher concentrations. The occurrence of surface plasmon resonance (SPR) bands and their evolution in the size range 5–10 nm is studied. For decreasing nanoparticle size, a redshift and broadening of the plasmon-related absorption peak was observed. The observed redshift and broadening of the SPR band was explained using modified Mie scattering theory
Resumo:
Polyaniline thin films prepared by RF plasma polymerisation were irradiated with 92MeV Si ions for various fluences of 1 1011, 1 1012 and 1 1013 ions/cm2. FTIR and UV–vis–NIR measurements were carried out on the pristine and Si ion irradiated polyaniline thin films for structural evaluation and optical band gap determination. The effect of swift heavy ions on the structural and optical properties of plasma-polymerised aniline thin film is investigated. Their properties are compared with that of the pristine sample. The FTIR spectrum indicates that the structure of the irradiated sample is altered. The optical studies show that the band gap of irradiated thin film has been considerably modified. This has been attributed to the rearrangement in the ring structure and the formation of CRC terminals. This results in extended conjugated structure causing reduction in optical band gap
Resumo:
Effective solids-liquid separation is the basic concept of any wastewater treatment system. Biological treatment methods involve microorganisms for the treatment of wastewater. Conventional activated sludge process (ASP) poses the problem of poor settleability and hence require a large footprint. Biogranulation is an effective biotechnological process which can overcome the drawbacks of conventional ASP to a great extent. Aerobic granulation represents an innovative cell immobilization strategy in biological wastewater treatment. Aerobic granules are selfimmobilized microbial aggregates that are cultivated in sequencing batch reactors (SBRs). Aerobic granules have several advantages over conventional activated sludge flocs such as a dense and compact microbial structure, good settleability and high biomass retention. For cells in a culture to aggregate, a number of conditions have to be satisfied. Hence aerobic granulation is affected by many operating parameters. The organic loading rate (OLR) helps to enrich different bacterial species and to influence the size and settling ability of granules. Hence, OLR was argued as an influencing parameter by helping to enrich different bacterial species and to influence the size and settling ability of granules. Hydrodynamic shear force, caused by aeration and measured as superficial upflow air velocity (SUAV), has a strong influence and hence it is used to control the granulation process. Settling time (ST) and volume exchange ratio (VER) are also two key influencing factors, which can be considered as selection pressures responsible for aerobic granulation based on the concept of minimal settling velocity. Hence, these four parameters - OLR, SUAV, ST and VER- were selected as major influencing parametersfor the present study. Influence of these four parameters on aerobic granulation was investigated in this work
Resumo:
The present work is the study of filamentous algae in the paddy fields of Kuttanad and Kole lands of Kerala. This investigation was initiated by sampling of filamentous algae in Kuttanad during December 2010 to February 2011. A second phase of sampling was done from November 2011 to February 2012. The sampling periodicity corresponded to the crop growth starting from field preparation through sowing, and continued till the harvest. Sampling locations were selected from the active paddy cultivation regions of the six agronomic zones of Kuttanad. The numbers of sampling locations were proportional to the area of each zone. Algae of the Kole lands were collected during from October 2011 to January 2012. It was observed that blue-green algae dominated in both Kuttanad and Kole lands. Thirty two species of blue-green algae and eight species of green algae were identified from Kuttanad. The highest number of algal species was observed from Kayal lands in Kuttanad throughout the cropping season. Among the thirty two species of blue-green algae twenty five species are nonheterocystous and seven species are heterocystous. Twenty eight species of blue-green and six species of green algae were identified from Kole lands, and highest number of species was observed in Palakkal throughout the cropping season. Among the twenty eight species of blue-green algae collected from Kole lands twenty one species are non-heterocystous, and only seven species are heterocystous filamentous algae. Blooms of Spirogyra were observed during the second phase of sampling in Kuttanad and also in the Kole lands. The results of the germination study revealed that the extract of Spirogyra sp. inhibited seed germination and reduced seedling vigour. The growth of the treated seedlings was evaluated by pot experiments. The results clearly showed that Spirogyra sp. can negatively affect the seed germination, seedling vigour, and the yield of rice.