33 resultados para Acid phosphate activity
Resumo:
Surface acidity of phosphate modified La2O3,CeO2 and SnO2 has been estimated by titrimetric Method using Hammett Indicators.Mixed Oxides of tin and lanthanum have also been prepared and subjected to phosphate modification.Surface characterizartion of the samples has been carried out using XRD, surface area,thermal analysis and IR spectroscopy. Phosphate content in the samples has been chemically estimated. The catalytic activity for benzylation and esterification reaction has also been investigated.
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
Rare earth metal ion exchanged (La3+, Ce3+, RE3+) KFAU-Y zeolites were prepared by simple ion-exchange methods and have been characterized using different physico-chemical techniques. In this paper a novel application of solid acid catalysts in the dehydration/ Beckmann rearrangement of aldoximes; benzaldoxime and 4-methoxybenzaldoxime is reported. Dehydration/Beckmann rearrangement reactions of benzaldoxime and 4-methoxybenzaldoxime is carried out in a continuous down flow reactor at 473K. 4-Methoxybenzaldoxime gave both Beckmann rearrangement product (4-methoxyphenylformamide) and dehydration product (4-methoxybenzonitrile) in high overall yields. The difference in behavior of the aldoximes is explained in terms of electronic effects. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream studies show a fast decline in the activity of the catalyst due to neutralization of acid sites by the basic reactant and product molecules.
Resumo:
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. Km was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.
Resumo:
Three enzymes, α-amylase, glucoamylase and invertase, were immobilized on acid activated montmorillonite K 10 via two independent techniques, adsorption and covalent binding. The immobilized enzymes were characterized by XRD, N2 adsorption measurements and 27Al MAS-NMR spectroscopy. The XRD patterns showed that all enzymes were intercalated into the clay inter-layer space. The entire protein backbone was situated at the periphery of the clay matrix. Intercalation occurred through the side chains of the amino acid residues. A decrease in surface area and pore volume upon immobilization supported this observation. The extent of intercalation was greater for the covalently bound systems. NMR data showed that tetrahedral Al species were involved during enzyme adsorption whereas octahedral Al was involved during covalent binding. The immobilized enzymes demonstrated enhanced storage stability. While the free enzymes lost all activity within a period of 10 days, the immobilized forms retained appreciable activity even after 30 days of storage. Reusability also improved upon immobilization. Here again, covalently bound enzymes exhibited better characteristics than their adsorbed counterparts. The immobilized enzymes could be successfully used continuously in the packed bed reactor for about 96 hours without much loss in activity. Immobilized glucoamylase demonstrated the best results.
Resumo:
Ferrospinels of nickel, cobalt and copper and their sulphated analogues were prepared by the room temperature coprecipitation route to yield samples with high surface areas. The intrinsic acidity among the ferrites was found to decrease in the order: cobalt> nickel> copper. Sulphation caused an increase in the number of weak and medium strong acid sites, whereas the strong acid sites were left unaffected. Electron donor studies revealed that copper ferrite has both the highest proportion of strong sites and the lowest proportion of weak basic sites. All the ferrite samples proved to be good catalysts for the benzoy lation of toluene with benzoyl chloride. copper and cobalt ferrites being much more active than nickel ferrite. The catalytic activity for benzoylation was not much influenced by sulphation, but it increased remarkably with calcination temperature of the catalyst. Surface Lewis acid sites, provided by the octahedral cations on the spinel surface, are suggested to be responsible for the catalytic activity for the benzoylation reaction.
Resumo:
The present work attempts a systematic examination of the effect of sulphate content on the physico-chemical properties and catalytic activity of sulphated zirconia and iron promoted sulphated zirconia systems. Sulphate content is estimated by EDX analysis. The amount of sulphate incorporated has been found to influence the surface area, crystal structure and the acid strength distribution. Ammonia TPD and adsorption studies using perylene have enabled the determination of surface acidic properties. The results are supported by the thermodesorption studies using pyridine and 2,6-dimethylpyridine. The catalytic activity towards benzoylation reaction has been correlated with the surface acidity of the systems.
Resumo:
The surface acidity and basicity of mixed oxides of Zr and Y and their mixed oxides have been determined by titration method using Hammett indicators. The acid base properties are evaluated on a common scale of acid strength. Liquid phase reduction of cyclohexanone has been selected as a model reaction to correlate catalytic activity.
Resumo:
Chromia loaded sulfated titania has been synthesized via sol–gel route with different chromia loadings. These catalysts are characterized using conventional techniques such as XRD analysis, FTIR analysis, surface area and pore volume measurements, EDX, SEM and UV–Vis diffuse reflectance spectral analysis. Acidity is measured using spectrophotometric monitoring of adsorption of perylene, thermogravimetric desorption of 2,6-dimethylpyridine and temperature programmed desorption of ammonia. Activity studies are done in the liquid phase. It has been concluded that Lewis acid sites are responsible for the benzylation of arenes with benzyl chloride.
Resumo:
The synthesis of dimethyl acetals of carbonyl compounds such as cyclohexanone, acetophenone, and benzophenone has successfully been carried out by the reaction between ketones and methanol using different solid acid catalysts. The strong influence of the textural properties of the catalysts such as acid amount and adsorption properties (surface area and pore volume) determine the catalytic activity. The molecular size of the reactants and products determine the acetalization ability of a particular ketone. The hydrophobicity of the various rare earth exchanged Mg–Y zeolites, K-10 montmorillonite clay, and cerium exchanged montmorillonite (which shows maximum activity) is more determinant than the number of active sites present on the catalyst. The optimum number of acidic sites as well as dehydrating ability of Ce3+-montmorillonite and K-10 montmorillonite clays and various rare earth exchanged Mg–Y zeolites seem to work well in shifting the equilibrium to the product side.
Resumo:
Cyclohexanol decomposition activity of supported vanadia catalysts is ascribed to the high surface area, total acidity and interaction between supported vanadia and the amorphous support. Among the supported catalysts, the effect of vanadia over various wt% V2O5 (2–10) loading indicates that the catalyst comprising of 6 wt% V2O5 exhibits higher acidity and decomposition activity. Structural characterization of the catalysts has been done by techniques like energy dispersive X-ray analysis, X-ray diffraction and BET surface area. Acidity of the catalysts has been measured by temperature programmed desorption using ammonia as a probe molecule and the results have been correlated with the activity of catalysts.
Resumo:
Vanadia/ceria catalysts (2–10 wt% of V2O5) were prepared by wet impregnation of ammonium metavanadate in oxalic acid solution. Structural characterization was done with energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), BET surface area measurements, FT-IR spectroscopy and nuclear magnetic spectral analysis (51V MASNMR). XRD and 51V MASNMR results show highly dispersed vanadia species at lower loadings and the formation of CeVO4 phase at higher V2O5 loading. The catalytic activity of catalysts was conducted in liquid phase oxidation of ethylbenzene with H2O2 as oxidant. The oxidation activity is increased with loading up to 8 wt% V2O5 and then decreased with further increase in V2O5 content to 10 wt%. Different vanadia species evidenced by various techniques were found to be selective towards ethylbenzene oxidation. The CeVO4 formation associated with increased concentration of vanadia on ceria results the production of acetophenone along with 2-hydroxyacetophenone.
Resumo:
The work presented in this thesis is mainly centered on the synthesis and characterization of some encapsulated transition metal complexes and the catalytic activity of the synthesized complexes in certain organic reactions.thesis deals with the catalytic activity of ruthenium-exchanged zeolite and the zeolite encapsulated complexes of SSC, SOD, SPD, AA, ABA, DMG, PCO, PCP, CPO and CPP in the hydroxylation of phenol using hydrogen peroxide. The products were analyzed with a GC to determine the percentage conversion and the chromatograms indicate the presence of different products like hydroquinone, catechol,benzoquinone, benzophenone etc. The major product formed is hydroquinone. From the screening studies, RuYSSC was found to be the most effective catalyst for phenol hydroxylation with 94.4% conversion and 76% hydroquinone selectivity. The influence of different factors like reaction time, temperature, amount of catalyst, effect of various solvents and oxidant to substrate ratio in the catalytic activity were studied in order to find out the optimum conditions for the hydroxylation reaction. The influence of time on the percentage conversion of phenol was studied by conducting the reactions for different durations varying from one hour to four hours. There is an induction period for all the complexes and the length of the induction period depends on the nature of the active components. Though the conversion of phenol and selectivity for hydroquinone. increases with time, the amount of benzoquinone formed decreases with time. This is probably due to the decomposition of benzoquinone formed during the initial stages of the reaction into other degradation products like benzophenones. The effect of temperature was studied by carrying out the reaction at three different temperatures, 30°C, 50°C and 70°C. Reactions carried at temperatures higher than 70°C result either in the decomposition of the products or in the formation of tarry products. Activity increased with increase in the amount of the catalyst up to a certain level. However further increase in the weight of the catalyst did not have any noticeable effect on the percentage conversion. The catalytic studies indicate that the oxidation reaction increases with increase in the volume of hydrogen peroxide till a certain volume. But further increase in the volume of H202 is detrimental as some dark mass is obtained after four hours of reaction. The catalytic activity is largely dependent on the nature of the solvent and maximum percentage conversion occurred when the solvent used is water. The intactness of the complexes within the zeolite cages enhances their possibility of recycling and the activities of the recycled catalysts show only a slight decrease when compared to the fresh samples .
Resumo:
The thesis mainly discussed the isolation and identification of a probiotic Lactobacillus plantarum, fermentative production of exopolysaccharide by the strain, its purification, structural characterisation and possible applications in food industry and therapeutics. The studies on the probiotic characterization explored the tolerance of the isolated LAB cultures to acid, bile, phenol, salt and mucin binding. These are some of the key factors that could satisfy the criteria for probiotic strains . The important factors required for a high EPS production in submerged fermentation was investigated with a collection of statistical and mathematical approach. Chapter 5 of the thesis explains the structural elucidation of EPS employing spectroscopic and chromatographic techniques. The studies helped in the exploration of the hetero-polysaccharide sequence from L. plantarum MTCC 9510. The thesis also explored the bioactivities of EPS from L. plantarum. As majority of chemical compounds identified as anti-cancerous are toxic to normal cells, the discovery and identification of new safe drugs has become an important goal of research in the biomedical sciences. The thesis has explored the anti-oxidant, anti-tumour and immunomodulating properties of EPS purified from Lactobacillus plantarum. The presence of (1, 3) linkages and its molecular weight presented the EPS with anti-oxidant, anti-tumour and immunomodulating properties under in vitro conditions.
Resumo:
The thesis comprises a set of experiments mainly focused on the improvement of L-glutamic acid fennentation. Much attention has been given to use of locally available raw materials, culturing the organism on inert solid substrates and also immobilization of the bacterial cells from the view point of long term utilization of biocatalyst and continuous operation of the stabilized system. Studies were also carried out for the down stream processing for the extraction and purification of L-glutamic acid. An attempt was made to study the morphological features of the microorganism including the cell premeability. In relation with the accumulation of glutamic acid within the cells an approach was made to study the behaviour of the Brevibacterium cells when they are exposed to hyper osmotic environment. Attempts were also made to study the requirement of iron and production of siderophores by this microbial strain. The search for a suitable nitrogen source for glutamate fermentation ended with a promising result that they got a potent urease activity and it can be utilized for many biotransfonnation studies. The entire thesis is presented in three sections, viz. introductory section, experimental section and the concluding section