21 resultados para Absorption coefficient, 300 nm
Resumo:
Conducting polymers are excellent microwave absorbers and they show technological advantage when compared with inorganic electromagnetic absorbing materials, being light weight , easily processable, and the ability of changing the electromagnetic properties with nature and amount of dopants, synthesis conditions, etc. In this paper we report the synthesis, dielectric properties, and expected application of conducting composites based on polyaniline (PAN). Cyclohexanone soluble conducting PAN composites of microwave conductivity 12.5 S/m was synthesized by the in situ polymerization of aniline in the presence of emulsion grade polyvinyl chloride. The dielectric properties of the composites, especially the dielectric loss, conductivity, dielectric heating coefficient , absorption coefficient, and penetration depth, were studied using a HP8510 vector network analyzer. The microwave absorption of the composites were studied at different frequency bands i.e, S, C, and X bands (2-12 GHz). The absorption coefficient was found to be higher than 200 m -' and it can be used for making microwave absorbers in space applications
Resumo:
In this article we present the nonlinear optical properties of ZnO–TiO2–SiO2 nanocomposites prepared by colloidal chemical synthesis. Nonlinear optical response of these samples is studied using nanosecond laser pulses at an off-resonance wavelength. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and TiO2. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour. The nonlinear refractive index and the nonlinear absorption increases with increasing ZnO volume fraction. The observed nonlinear absorption is explained by two photon absorption followed by weak free carrier absorption and nonlinear scattering. ZnO–TiO2–SiO2 is a potential nanocomposite material for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000–3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.
Resumo:
Phantoms that exhibit complex dielectric properties similar to low water content biological tissues over the electromagnetic spectrum of 2–3 GHz have been synthesized from carbon black powder, graphite powder and polyvinyl-acetate-based adhesive. The materials overcome various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the materials for various compositions of carbon black and graphite powder are studied. A combination of 50% polyvinylacetate- based adhesive, 20% carbon black powder and 30% graphite powder exhibits high absorption coefficient, which suggests another application of the material as good microwave absorber for interior lining of tomographic chamber in microwave imaging. Cavity perturbation technique is adopted to study the dielectric properties of the material.
Resumo:
Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.
Resumo:
SnS thin films were prepared using automated chemical spray pyrolysis (CSP) technique. Single-phase, p-type, stoichiometric, SnS films with direct band gap of 1.33 eV and having very high absorption coefficient (N105/cm) were deposited at substrate temperature of 375 °C. The role of substrate temperature in determining the optoelectronic and structural properties of SnS films was established and concentration ratios of anionic and cationic precursor solutions were optimized. n-type SnS samples were also prepared using CSP technique at the same substrate temperature of 375 °C, which facilitates sequential deposition of SnS homojunction. A comprehensive analysis of both types of films was done using x-ray diffraction, energy dispersive x-ray analysis, scanning electron microscopy, atomic force microscopy, optical absorption and electrical measurements. Deposition temperatures required for growth of other binary sulfide phases of tin such as SnS2, Sn2S3 were also determined