187 resultados para Reflective semiconductor optical amplifier
Resumo:
The work reported in this thesis is the preparation, and the structural, electrical and optical properties of reactively evaporated lead sulphide and tin telluride thin films. The three temperature method had been used for the preparation of these semiconductor thin films. In this preparation technique constituent elements are evaporated from separate sources with the substrate kept at a particular temperature. when one of the constituent element is a gas near room temperature, the method is often called reactive evaporation. It has been found for many materials that a stoichiometric interval exists with a limited range of flux and substrate temperature. Usually this technique is used for the preparation of thin films of high melting point compounds or of materials which decompose during evaporation. Tin telluride and lead sulphide are neither high melting point materials nor do they decompose on melting. But even than reactive evaporation offers the possibility of changing the ratios of the flux of the constituent elements within a wide range and studying its effect on the properties of the films
Resumo:
Semiconductor photocatalysis has received much attention during last three decades as a promising solution for both energy generation and environmental problems. Heterogeneous photocatalytic oxidation allows the degradation of organic compounds into carbon dioxide and water in the presence of a semiconductor catalyst and UV light source. The •OH radicals formed during the photocatalytic processes are powerful oxidizing agents and can mineralise a number of organic contaminants. Titanium dioxide (TiO2), due to its chemical stability, non-toxicity and low cost represents one of the most efficient photocatalyst. However, only the ultraviolet fraction of the solar radiation is active in the photoexcitation processes using pure TiO2 and although, TiO2 can treat a wide range of organic pollutants the effectiveness of the process for pollution abatement is still low. A more effective and efficient catalyst therefore must be formulated. Doping of TiO2 was considered with the aim of improving photocatalytic properties. In this study TiO2 catalyst was prepared using the sol-gel method. Metal and nonmetal doped TiO2 catalysts were prepared. The photoactivity of the catalyst was evaluated by the photodegradation of different dyes and pesticides in aqueous solution. High photocatalytic degradation of all the pollutants was observed with doped TiO2. Structural and optical properties of the catalysts were characterized using XRD, BET surface area, UV-Vis. DRS, CHNS analysis, SEM, EDX, TEM, XPS, FTIR and TG. All the catalysts showed the anatase phase. The presence of dopants shifts the absorption of TiO2 into the visible region indicating the possibility of using visible light for photocatalytic processes.
Resumo:
Fluorescence is a powerful tool in biological research, the relevance of which relies greatly on the availability of sensitive and selective fluorescent probes. Nanometer sized fluorescent semiconductor materials have attracted considerable attention in recent years due to the high luminescence intensity, low photobleaching, large Stokes’ shift and high photochemical stability. The optical and spectroscopic features of nanoparticles make them very convincing alternatives to traditional fluorophores in a range of applications. Efficient surface capping agents make these nanocrystals bio-compatible. They can provide a novel platform on which many biomolecules such as DNA, RNA and proteins can be covalently linked. In the second phase of the present work, bio-compatible, fluorescent, manganese doped ZnS (ZnS:Mn) nanocrystals suitable for bioimaging applications have been developed and their cytocompatibility has been assessed. Functionalization of ZnS:Mn nanocrystals by safe materials results in considerable reduction of toxicity and allows conjugation with specific biomolecules. The highly fluorescent, bio-compatible and water- dispersible ZnS:Mn nanocrystals are found to be ideal fluorescent probes for biological labeling
Resumo:
Chaos is a subject oftopical interest and, studied in great detail in relation to its relevance in almost all branches of science, which include physical, chemical, and biological fields. Chaos in the literal sense signifies utter confusion, but the scientific community has differentiated chaos as deterministic chaos and white noise. Deterministic chaos implies the complex behaviour of systems, which are governed by deterministic laws. Behaviour of such systems often become unpredictable in the long run. This unpredictability arises from the sensitivity of the system to its initial conditions. The essential requirement for ‘sensitivity to initial condition’ is nonlinearity of the system. The only method for determining the future of such systems is numerically simulating its final state from a set ofinitial conditions. Synchronisation
Resumo:
The objective of this study is to understand the reasons for the enhancement in aerosol optical depth (AOD) over the Arabian Sea observed during June, July and August. During these months, high values of AOD are found over the sea beyond 10◦ N and adjacent regions. The Arabian Sea is bounded by the lands of Asia and Africa on its three sides. So the region is influenced by transported aerosols from the surroundings as well as aerosols of local origin (marine aerosols). During the summer monsoon season in India, strong surface winds with velocities around 15 m s−1 are experienced over most parts of the Arabian Sea. These winds are capable of increasing sea spray activity, thereby enhancing the production of marine aerosols. The strong winds increase the contribution of marine aerosols over the region to about 60% of the total aerosol content. The main components of marine aerosols include sea salt and sulphate particles. The remaining part of the aerosol particles comes from the western and northern land masses around the sea, of which the main component is transported dust particles. This transport is observed at higher altitudes starting from 600 m. At low levels, the transport occurs mainly from the Indian Ocean and the Arabian Sea itself, indicating the predominance of marine aerosols at these levels. The major portion of the total aerosol loading was contributed by coarse-mode particles during the period of study. But in the winter season, the concentration of coarse-mode aerosols is found to be less. From the analysis, it is concluded that the increase in marine aerosols and dust particles transported from nearby deserts results in an increase in aerosol content over the Arabian Sea during June, July and August.
Resumo:
The present work emphasizes the use of chirality as an efficient tool to synthesize new types of second order nonlinear materials. Second harmonic generation efficiency (SHG) is used as a measure of second order nonlinear response. Nonlinear optical properties of polymers have been studied theoretically and experimentally. Polymers were designed theoretically by ab initio and semiempirical calculations. All the polymeric systems have been synthesized by condensation polymerization. Second harmonic generation efficiency of the synthesized systems has been measured experimentally by Kurtz and Perry powder method
Resumo:
Photoluminescence (PL) spectroscopy is an optical technique that has emerged successful in the field of semiconductor material and device characterization. This technique is quite a powerful one which gives idea about the defect levels in a material, the band gap of the material, composition as well as material quality. Over the recent years it has received an elevation as a mainstream characterization technique. This thesis is an attempt to characterize each individual layer used in a thin film solar cell with special focus on the electrical properties. This will be highly beneficial from the lab as well as industrial point of view because electrical measurements generally are contact mode measurements which tend to damage the surface. As far as a thin film solar cell is concerned, the constituent layers are the transparent conducting oxide (TCO), absorber layer, buffer layer and top electrode contact. Each layer has a specific role to play and the performance of a solar cell is decided and limited by the quality of each individual layer. Various aspects of PL spectroscopy have been employed for studying compound semiconductor thin films [deposited using chemical spray pyrolysis (CSP)] proposed for solar cell application. This thesis has been structured in to seven chapters
Resumo:
Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers
Resumo:
Semiconductor physics has developed significantly in the field of re- search and industry in the past few decades due to it’s numerous practical applications. One of the relevant fields of current interest in material science is the fundamental aspects and applications of semi- conducting transparent thin films. Transparent conductors show the properties of transparency and conductivity simultaneously. As far as the band structure is concerned, the combination of the these two properties in the same material is contradictory. Generally a trans- parent material is an insulator having completely filled valence and empty conduction bands. Metallic conductivity come out when the Fermi level lies within a band with a large density of states to provide high carrier concentration. Effective transparent conductors must nec- essarily represent a compromise between a better transmission within the visible spectral range and a controlled but useful electrical con- ductivity [1–6]. Generally oxides like In2O3, SnO2, ZnO, CdO etc, show such a combination. These materials without any doping are insulators with optical band gap of about 3 eV. To become a trans- parent conductor, these materials must be degenerately doped to lift the Fermi level up into the conduction band. Degenerate doping pro- vides high mobility of extra carriers and low optical absorption. The increase in conductivity involves an increase in either carrier concen- tration or mobility. Increase in carrier concentration will enhance the absorption in the visible region while increase in mobility has no re- verse effect on optical properties. Therefore the focus of research for new transparent conducting oxide (TCO) materials is on developing materials with higher carrier mobilities.
Resumo:
The toluene diisocyanate based optically active chiral polyurethanes were synthesized according to the symmetry conditions. The noncentrosymmetric (both charge asymmetry and spatial asymmetry) environment were attained by the incorporation of the chiral units (diethyl-(2R,3R)(þ)-tartrate) and donor-acceptor building blocks in the main chain which induce a helical conformation in the macromolecular chain. A series of optically active polyurethanes containing chiral linkages in the polymer back bone have been synthesized by using DBTDL catalyst by incorporating the amido diols which were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane, and diaminohexane respectively. The effect of incorporation of the chiral molecule diethyl-(2R,3R)(þ)-tartrate on the properties of polyurethanes was studied by changing the chromophores and also by varying the chiral-chromophore composition. Various properties of polyurethanes were investigated by UV, Fluorescence, TG/DTA, XRD, polarimetric techniques, Kurtz-Perry powder techniques, etc.
Resumo:
A new class of chiral polyurethanes containing amido linkages in the polymer backbone have been synthesized by reacting toluene diisocyanate with isosorbide (IS) chiral moiety and the chromophores [N,N0-ethane- 1,2-diyl bis(6-hydroxy hexanamide), N,N0-butane-1,4-diyl bis(6-hydroxy hexanamide) and N,N0-hexane-1,6-diyl bis (6-hydroxy hexanamide)]. The corresponding chromophores were obtained by the aminolysis of e-caprolactone by using the diamines, diaminoethane, diaminobutane and diaminohexane, respectively. All the polymers were synthesized according to the symmetry conditions so as to obtain the non-centrosymmetric environment. A series of polyurethanes were synthesized by varying the chiral– chromophore composition. The polyurethanes developed were characterized by optical and thermal methods.
Resumo:
This study investigated the enhancement of solar disinfection using custom-made batch reactors with reflective (foil-backed) or absorptive (black-backed) rear surfaces, under a range of weather conditions in India. Plate counts of Escherichia coli ATCC11775 were made under aerobic conditions and under conditions where reactive oxygen species (ROS) were neutralised, i.e. in growth medium supplemented with 0.05% w/v sodium pyruvate plus incubation under anaerobic conditions. While the addition of either an absorptive or a reflective backing enhanced reactor performance under strong sunlight, the reflective reactor was the only system to show consistent enhancement under low sunlight, where the process was slowest. Counts performed under ROS-neutralised conditions were slightly higher than those in air, indicating that a fraction of the cells become sub-lethally injured during exposure to sunlight to the extent that they were unable to grow aerobically. However, the influence of this phenomenon on the dynamics of inactivation was relatively small
Resumo:
Polyaniline is a widely studied conducting polymer and is a useful material in its bulk and thin film form for many applications, because of its excellent optical and electrical properties. Pristine and iodine doped polyaniline thin films were prepared by a.c. and rf plasma polymerization techniques separately for the comparison of their optical and electrical properties. Doping of iodine was effected in situ. The structural properties of these films were evaluated by FTIR spectroscopy and the optical band gap was estimated from UV-vis-NIR measurements. Comparative studies on the structural, optical and electrical properties of a.c. and rf polymerization are presented here. It has been found that the optical band gap of the polyaniline thin films prepared by rf and a.c. plasma polymerization techniques differ considerably and the band gap is further reduced by in situ doping of iodine. The electrical conductivity measurements on these films show a higher value of electrical conductivity in the case of rf plasma polymerized thin films when compared to the a.c. plasma polymerized films. Also, it is found that the iodine doping enhanced conductivity of the polymer thin films considerably. The results are compared and correlated and have been explained with respect to the different structures adopted under these two preparation techniques
Resumo:
We report an optical limiter based on ferrofluids which has a very high shelf life and remarkable thermal stability, which are important requirements for sustainable use with intense lasers. The colloidal suspensions contain nanosized particles of approximately 80 Å diameter, with a number density of the order of 1022 /m3. The nonlinear optical transmission of the samples is studied using nanosecond and femtosecond laser pulses. Excited state absorption phenomena contribute to enhanced limiting in the nanosecond excitation regime. An advantageous feature of ferrofluids in terms of device applications is that their optical properties are controllable by an external magnetic field.
Resumo:
Polyaniline thin films prepared by RF plasma polymerisation were irradiated with 92MeV Si ions for various fluences of 1 1011, 1 1012 and 1 1013 ions/cm2. FTIR and UV–vis–NIR measurements were carried out on the pristine and Si ion irradiated polyaniline thin films for structural evaluation and optical band gap determination. The effect of swift heavy ions on the structural and optical properties of plasma-polymerised aniline thin film is investigated. Their properties are compared with that of the pristine sample. The FTIR spectrum indicates that the structure of the irradiated sample is altered. The optical studies show that the band gap of irradiated thin film has been considerably modified. This has been attributed to the rearrangement in the ring structure and the formation of CRC terminals. This results in extended conjugated structure causing reduction in optical band gap