174 resultados para Multilayer antenna
Resumo:
The radiation characteristics of a new type of hollow dielectric H-plane sectoral horn antenna are presented. Metallic strips of optimum length are loaded on the H-walls of the sectoral horns. The effects of strip loading for producing square patterns in the H plane are discussed.
Resumo:
The detection of buried objects using time-domain freespace measurements was carried out in the near field. The location of a hidden object was determined from an analysis of the reflected signal. This method can be extended to detect any number of objects. Measurements were carried out in the X- and Ku-bands using ordinary rectangular pyramidal horn antennas of gain 15 dB. The same antenna was used as the transmitter and recei er. The experimental results were compared with simulated results by applying the two-dimensional finite-difference time-domain(FDTD)method, and agree well with each other. The dispersi e nature of the dielectric medium was considered for the simulation.
Resumo:
This thesis Entitled Investigations on Broadband planar Dipole Antennas. An antenna is a device ordinarily used for both transmitting and receiving electromagnetic energy. It is an integral part of the radio communication system and accounts for a good deal of progress that has been made in this field during the last few decades.The effect of flaring the dipole arms is studied in Section 4.1. It is observed that the flaring modifies the impedance characteristics of the dipole. In particular, the change in the reactive part of the impedance with frequency is controlled considerably. This improves the 2:1 VSWR bandwidth of the antenna. The effect of various other design parameters on the impedance bandwidth of the antenna are also studied. The important conclusion drawn is that, there is considerable improvement in the impedance bandwidth of the dipole when ground arm dimensions are larger than the main arm dimensions. Theoretical analysis of various cavity backed antennas are given in Chapter 6. The experimental values agree well with the computation. Also the theory gives a clear inside view and explains the reasons for bandwidth enhancement due to flaring and end-loading of the dipole arms. The percentage bandwidth is determined by calculating the Q of the antenna. Since the approach is for the analysis of microstrip antenna on thick grounded substrate, this method cannot be used to predict the impedance bandwidth of the antennas without cavity backup. Also, the structures analysed are simplified versions of the optimised ones. Specially, the arms overlapping is neglected in the analysis. Also, the antennas with symmetrical arms can only be analysed with this theory.
Resumo:
This thesis presents the results of an investigation conducted for the development of a new type of feed horn antenna called "Simulated Scalar Feed". A schematic presentation of the work is given below. A review of the past important work done in the field of conventional/multimode electromagnetic horn antennas is presented in the first part of the second chapter. The work carried out on corrugated horns and surfaces are included in the second part of the review. In the third part, work on dielectric and dielectric loaded metal horns are reviewed. In all the parts of the review, special emphasis is given to theoretical design considerations. The methodology adopted for the experimental investigations is presented in the third chapter. The instrumentation utilized and thThis thesis presents the results of an investigation conducted for the development of a new type of feed horn antenna called "Simulated Scalar Feed". A schematic presentation of the work is given below. A review of the past important work done in the field of conventional/multimode electromagnetic horn antennas is presented in the first part of the second chapter. The work carried out on corrugated horns and surfaces are included in the second part of the review. In the third part, work on dielectric and dielectric loaded metal horns are reviewed. In all the parts of the review, special emphasis is given to theoretical design considerations. The methodology adopted for the experimental investigations is presented in the third chapter. The instrumentation utilized and the details of fabrication ofe details of fabrication of the new simulated scalar feed are described. The method of measurements of radiation characteristics of the antenna are also explained in this chapter. In the fourth chapter the outcome of the experimental results of the investigations carried out on horn antennas fabricated with different physical dimensions and different parameters for the E—plane boundary walls are highlighted. The theoretical explanation used to explain the experimental results is given in the fifth chapter of the thesis. A comparison between the experimental and the theoretical results is also presented in this chapter. In chapter six, the conclusions drawn from the experimental as well as the theoretical investigations are discussed. The advantages and features of the newly developed simulated scalar feed is examined in this chapter. Scope of further investigations in this field is also discussed at the end of this chapter.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.
Resumo:
The need of miniaturization in the present day communication industry is challenging. In the present scenario, printed antenna technology is highly suitable for wireless communication due to its low profile and other desirable radiation characteristics. Small monopole type antennas are overruled by compact small antennas for present day mobile communication applications. Coplanar waveguides (CPW) are printed on one side of a dielectric substrate. CPW have attracted the attention of antenna designers due to their excellent properties like ease of integration with ‘MMIC’, low cost, wide bandwidth, flexibility towards multiband operation, low radiation leakage and less dispersion. The requirement of omnidirectional coverage, light weight and low cost made these CPW fed antennas a good candidate for wireless applications. The main focus of the thesis is the study of coplanar waveguide transmission line. Rigorous investigations were performed on both the ground plane and signal strip of a coplanar waveguide transmission line to create effective radiation characteristics. Good amount of works have been done to transform CPW line to antenna suitable for mobile phone applications
Resumo:
The need for improved feed systems for large reflector antennas employed in Radio Astronomy and Satellite tracking spurred the interest in horn antenna research in the 1960's. The major requirements were to reduce spill over, cross-polarisation losses,and to enhance the aperture efficiency to the order of about 75-8O%L The search for such a feed culminated in the corrugated horn. The corrugat1e 1 horn triggered widespread interest and enthusiasm, and a large amount of work(32’34’49’5O’52’53’58’65’75’79)has already been done on this type of antennas. The properties of corrugated surfaces has been investigated in detail. It was strongly felt that the flange technique and the use of corrugated surfaces could be merged together to obtain the advantages of both. This is the idea behind the present work. Corrugations are made on the surface of flange elements. The effect of various corrugation parameters are studied. By varying the flange parameters, a good amount of data is collected and analysed to ascertain the effects of corrugated flanges. The measurements are repeated at various frequencies, in the X— and S-bands. The following parameters of the system were studied: (a) beam shaping (b) gain (c) variation of V.S.U.R. (d) possibility of obtaining circularly polarised radiation from the flanged horn. A theoretical explanation to the effects of corrugated flanges is attempted on the basis of the line-source theory. Even though this theory utilises a simplified model for the calculation of radiation patterns, fairly good agreement between the computed pattern and experimental results are observed.
Resumo:
The flange technique, suggested by Reynolds72 is simple technique to improve antenna characteristics. Using flange technique we can trim the antenna characteristic by suitably adjusting the flange parameters75. Later corrugated flanges87 are used for beam shaping. The important parameters of the corrugated flanges are (a) flange angle, (b) flange width, (c) flange position, (d) conductivity of the flange, (e) amplitude excitation of the flange elements, (f) period of corrugation etc. Compared to a compound horn the flange technique offers great convenience in trimming antenna characteristics. Horns are commonly used as a feed in radar and satellite communications. A large number of work had been done to improve the characteristics of horn antennas. It is an established fact that grooved walls on the inner surface of a horn can improve the antenna characteristics44. Corrugated comb surface can be used for the circular polarization98, tilt of polarization99 etc. This suggests the possibility to combine these two phenomena and to obtain a resultant beam. This thesis presents the result of an investigation to study the possibility of controlling different antenna characteristics like polarization, beam shaping, matching etc, using corrugated flange techniques.
Resumo:
In recent years, there is a visible trend for products/services which demand seamless integration of cellular networks, WLANs and WPANs. This is a strong indication for the inclusion of high speed short range wireless technology in future applications. In this context UWB radio has a significant role to play as an extension/complement to existing cellular/access technology. In the present work, three major types of ultra wide band planar antennas are investigated: Monopole and Slot. Three novel compact UWB antennas, suitable for poratble applications, are designed and characterized, namely 1) Ground modified monopole 2) Serrated monopole 3) Triangular slot The performance of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances in each structure. In addition to having compact sized, high efficiency and broad bandwidth antennas, one of the major criterion in the design of impulse-UWB systems have been the transmission of narrow band pulses with minimum distortion. The key challenge is not only to design a broad band antenna with constant and stable gain but to maintain a flat group delay or linear phase response in the frequency domain or excellent transient response in time domain. One of the major contributions of the thesis lies in the analysis of the frequency and timedomain response of the designed UWB antennas to confirm their suitability for portable pulsed-UWB systems. Techniques to avoid narrowband interference by engraving narrow slot resonators on the antenna is also proposed and their effect on a nano-second pulse have been investigated
Resumo:
Antennas play an important role in determining the characteristics of any electronic system which depends on free space as the propagation medium. Basically, an antenna can be considered as the connecting link between free space and the transmitter or receiver. For radar and navigational purposes the directional properties of an antenna is its most basic requirement as it determines the distribution of radiated energy. Hence the study of directional properties of antennas has got special significance and several useful applications.
Resumo:
The thesis aims to present the results of experimental investigations on the changes of optical properties of metallic thin films due to heating. The parameters which are measured are reflectivity, refractive indices and the ellipsometric quantities V and A . The materials used in the studies are metals like Silver, Aluminium and Copper. By applying the optical method the interdiffusion taking place in multilayer ‘films of Aluminium and Silver has also been studied. Special interest has been taken to reveal the mechanisms of the hillock growth and surface roughness caused by heating and their relation with the stress in the film
Resumo:
Investigations on the design and development of certain new hollow dielectric hom antennas of rectangular cross section have been carried out. The main shortcoming of the existing ordinary hollow dielectric hom antenna (HDH) is the abrupt discontinuity at the feed-end. A new launching technique using a dielectric rod is introduced to overcome this limitation. Also a strip loading technique is employed for further modification of the antenna. Radiation parameters of new I-IDH antennas of Eplane sectoral, H-plane sectoral and pyramidal types were studied and are found to be very attractive. Theoretical approach based on Marcatili’s principle and two aperture theory along with diffraction theory and image theory is used to support the experimental findings. The HDH is considered as solid horn of effective dielectric constant and the aperture field is evaluated. The antenna is excited by the open waveguide in the dominant TE1o mode and so the existence of any hybrid mode is mled-out. The theoretical results are observed to be in good agreement with the experimental results.
Resumo:
Antennas, the key element in wireless communication devices had undergone amazing developments especially in the direction of compactness and safety aspects. In the last two decades, the use of the cellular phones has become the most popular mode of communication across the globe. At the same time, the concerns about the radiation effects have increased in the general public. The main concern of this thesis is to develop a mobile antenna which gives reduced RF interference to the user. The reduction of the power absorbed by the user can tremendously avoid any possible health hazards. The radiation characteristic of a monopole antenna is modified with good radiation characteristics suitable for a mobile handset. The modification is implemented by using different resonating structures which provides reduced radiation along one direction. The direction of less radiation can be changed by modifying the planar antenna structure to a ground folded antenna. This modified structure with excellent radiation characteristic is suitable for modern wireless handheld devices with less user RF interference. Specific Absorption Rate (SAR) is an important parameter for mobile handset. The SAR is estimated for the newly developed antenna for different conditions and discussed in this thesis.
Resumo:
Sensor networks are one of the fastest growing areas in broad of a packet is in transit at any one time. In GBR, each node in the network can look at itsneighbors wireless ad hoc networking (? Eld. A sensor node, typically'hop count (depth) and use this to decide which node to forward contains signal-processing circuits, micro-controllers and a the packet on to. If the nodes' power level drops below a wireless transmitter/receiver antenna. Energy saving is one certain level it will increase the depth to discourage trafiE of the critical issue for sensor networks since most sensors are equipped with non-rechargeable batteries that have limitedlifetime. Routing schemes are used to transfer data collectedby sensor nodes to base stations. In the literature many routing protocols for wireless sensor networks are suggested. In this work, four routing protocols for wireless sensor networks viz Flooding, Gossiping, GBR and LEACH have been simulated using TinyOS and their power consumption is studied using PowerTOSSIM. A realization of these protocols has beencarried out using Mica2 Motes.
Resumo:
With the recent progress and rapid increase in the field of communication, the designs of antennas for small mobile terminals with enhanced radiation characteristics are acquiring great importance. Compactness, efficiency, high data rate capacity etc. are the major criteria for the new generation antennas. The challenging task of the microwave scientists and engineers is to design a compact printed radiating structure having broadband behavior along with good efficiency and enhanced gain. Printed antenna technology has received popularity among antenna scientists after the introduction of planar transmission lines in mid-seventies. When we view the antenna through a transmission line concept, the mechanism behind any electromagnetic radiator is quite simple and interesting. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and orientation of the discontinuities control the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non-resonant. This thesis deals with antennas that are developed from a class of transmission lines known as coplanar strip-CPS, a planar analogy of parallel pair transmission line. The specialty of CPS is its symmetric structure compared to other transmission lines, which makes the antenna structures developed from CPS quite simple for design and fabrication. The structural modifications on either metallic strip of CPS results in different antennas. The first part of the thesis discusses a single band and dual band design derived from open ended slot lines which are very much suitable for 2.4 and 5.2 GHz WLAN applications. The second section of the study is vectored into the development of enhanced gain dipoles. A single band dipole and a wide band enhanced gain dipole suitable for 5.2/5.8 GHZ band and imaging applications are developed and discussed. Last part of the thesis discusses the development of directional UWBs. Three different types of ultra-compact UWBs are developed and almost all the frequency domain and time domain analysis of the structures are discussed.