27 resultados para crystal purity
Resumo:
The MgAl2O4 ceramics were prepared by the conventional solid-state ceramic route and the dielectric properties studied in the microwave frequency region (3–13 GHz). The phase purity and crystal structure were identified using the X-ray diffraction technique. The MgAl2O4 spinel ceramics show interesting microwave dielectric properties (εr = 8.75, Qux f = 68 900 GHz (loss tangent = 0.00017 at 12.3 GHz), τf =−75 ppm/◦C). The MgAl2O4 has high negative τf, which precludes its immediate use in practical applications. Hence the microwave dielectric properties of MgAl2O4 spinels were tailored by adding different mole fractions of TiO2. The εr and Q factor of the mixed phases were increased with the molar addition of TiO2 into the spinel to form mixtures based on (1−x)MgAl2O4-xTiO2 (x = 0.0−1.0). For x = 0.25 in (1−x)MgAl2O4-xTiO2, the microwave quality factor reaches a maximum value of Qux f = 105 400 GHz (loss tangent = 0.00007 at 7.5 GHz) where εr and τf are 11.035 and −12 ppm/◦C, respectively. The microwave dielectric properties of the newly developed 0.75MgAl2O4-0.25TiO2 dielectric is superior to several commercially available low loss dielectric substrates.
Resumo:
The microwave dielectric properties of ZnAl2O4 spinels were investigated and their properties were tailored by adding different mole fractions of Ti02. The samples were synthesized using the mixed oxide rout.e. The phase purity and crystal structure were identified using X-ray diffraction technique. The sintered specimens were characterized in the microwave frequency range (3-13 GHz). The ZnA12O4 ceramics exhibited interesting dielectric properties (dielectric constant (e,.) = 8.5, unloaded quality factor (Q.) = 4590 at 12.27 GHz and temperature coefficient of resonant frequency (Tf) = -79 ppm/°C). Addition of Ti02 into the spinel improved its properties and the Tf approached zero for 0.83ZnAl2O4- 0.17TiO2• This temperature compensated composition has excellent microwave dielectric properties (Cr _ 12.67, Q, = 9950 at 10.075 GHz) which can be exploited for microwave substrate applications
Resumo:
An efficient one-pot synthesis of two new heterocyclic perimidines 4-(2,3-dihydro-1H-perimidin-2-yl)-2-methoxyphenol and 2-(quinoxalin-2-yl)-2,3-dihydro-1H-perimidine in good yields is presented. This methodology provides a simple, straightforward synthetic route to these interesting classes of heterocycles. Crystal structure, solvatochromism and antibacterial activity of these organic compounds are discussed.
Resumo:
Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol
Resumo:
Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol
Resumo:
Complete thermal characterization of liquid crystal mixtures in the smectic phase consisting of various relative volume fractions of cholesterol and 1-hexadecanol have been carried out using the photoacoustic technique. Thermal diffusivity values of these liquid crystal mixtures are evaluated using the open cell photoacoustic technique whereas the thermal effusivity value is measured using the conventional photoacoustic technique. From the measured values of these transient thermophysical parameters, the thermal conductivity and heat capacity of the sample under investigation are calculated. Analyses of the results show that all the thermophysical parameters depend strongly on the volume fraction of the constituents. Results are interpreted in terms of enhanced hydrogen bonding and the consequent enhancement in cohesive thermal energy transport with increasing volume fraction of 1-hexadecanol
Resumo:
We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase.
Resumo:
We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase
Resumo:
We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase.
Resumo:
Department of Electronics, Cochin University of Science and Technology
Resumo:
The cobalt(III) complex, [Co(L)2(N3)2]2(ClO4)2, L being a Schiff base N-[phenyl(pyridin-2-yl)methylene]aniline has been synthesized and the crystal structure determined using X-ray crystallography. The complex crystallizes in triclinic system, space group P-1 with unit cell parameters a=10.9367(9) , b=18.0817(17) , c=20.1629(16) , α=111.341(2), β=91.622(2), γ=107.5030(10), V=3499.1(5) 3 and Z=2. It crystallizes with two independent molecules in the asymmetric unit. The two cobalt atoms are hexa-coordinate and have a distorted octahedral geometry, satisfied by four nitrogen atoms from two molecules of the Schiff base and two nitrogen atoms from the monodentate azide group. The perchlorate ions are non-coordinating.
Resumo:
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.
Resumo:
The present work is concentrated on the studies of two novel semicarbazones, di-2-pyridyl ketone-N4-phenyl-3-semicarbazone (HL1) and quinoline-2-carboxaldehyde-N4-phenyl-3-semicarbazone (HL2). The compositions of these semicarbazones were determined by the CHN analyses. For the characterization of these compounds we have used IR, UV and NMR spectral studies. The molecular structure of quinoline-2-carboxaldehyde-N4-phenyl-3- semicarbazone (HL2) was obtained by single crystal X-ray diffraction studies. Also, we have synthesized Zn(II), Cd(II), Cu(II), Ni(II), Co(II) and Mn(II) complexes of these semicarbazones, HL1 and HL2. These complexes were characterized by various spectroscopic techniques, magnetic and conductivity studies. We could isolate single crystals of some Zn(II) and Cd(II) compounds suitable for X-ray diffraction studies. For other complexes we could not isolate single crystals of good quality for single crystal X-ray diffraction studies.
Resumo:
Organic nonlinear optical single crystals of Methyl para-Hydroxy Benzoate (MHB) have been grown using gel-solution technique. These crystals are cut along z-axis and are bombarded with Ag14+ ions of energy 100 MeV. The results show an increase in refractive index at the ion irradiated region. The dielectric constant of the irradiated crystal is increased more than 15 times compared to that of a nonirradiated crystal. The result of these changes and comparative study of second harmonic generation (SHG) efficiency before and after irradiation is discussed.
Resumo:
The effect of coupling two chaotic Nd:YAG lasers with intracavity KTP crystal for frequency doubling is numerically studied for the case of the laser operating in three longitudinal modes. It is seen that the system goes from chaotic to periodic and then to steady state as the coupling constant is increased. The intensity time series and phase diagrams are drawn and the Lyapunov characteristic exponent is calculated to characterize the chaotic and periodic regions.