28 resultados para Teleonomic Entropy
Resumo:
The present study on the characterization of probability distributions using the residual entropy function. The concept of entropy is extensively used in literature as a quantitative measure of uncertainty associated with a random phenomenon. The commonly used life time models in reliability Theory are exponential distribution, Pareto distribution, Beta distribution, Weibull distribution and gamma distribution. Several characterization theorems are obtained for the above models using reliability concepts such as failure rate, mean residual life function, vitality function, variance residual life function etc. Most of the works on characterization of distributions in the reliability context centers around the failure rate or the residual life function. The important aspect of interest in the study of entropy is that of locating distributions for which the shannon’s entropy is maximum subject to certain restrictions on the underlying random variable. The geometric vitality function and examine its properties. It is established that the geometric vitality function determines the distribution uniquely. The problem of averaging the residual entropy function is examined, and also the truncated form version of entropies of higher order are defined. In this study it is established that the residual entropy function determines the distribution uniquely and that the constancy of the same is characteristics to the geometric distribution
Resumo:
Machine tool chatter is an unfavorable phenomenon during metal cutting, which results in heavy vibration of cutting tool. With increase in depth of cut, the cutting regime changes from chatter-free cutting to one with chatter. In this paper, we propose the use of permutation entropy (PE), a conceptually simple and computationally fast measurement to detect the onset of chatter from the time series using sound signal recorded with a unidirectional microphone. PE can efficiently distinguish the regular and complex nature of any signal and extract information about the dynamics of the process by indicating sudden change in its value. Under situations where the data sets are huge and there is no time for preprocessing and fine-tuning, PE can effectively detect dynamical changes of the system. This makes PE an ideal choice for online detection of chatter, which is not possible with other conventional nonlinear methods. In the present study, the variation of PE under two cutting conditions is analyzed. Abrupt variation in the value of PE with increase in depth of cut indicates the onset of chatter vibrations. The results are verified using frequency spectra of the signals and the nonlinear measure, normalized coarse-grained information rate (NCIR).
Resumo:
n this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.
Resumo:
Timely detection of sudden change in dynamics that adversely affect the performance of systems and quality of products has great scientific relevance. This work focuses on effective detection of dynamical changes of real time signals from mechanical as well as biological systems using a fast and robust technique of permutation entropy (PE). The results are used in detecting chatter onset in machine turning and identifying vocal disorders from speech signal.Permutation Entropy is a nonlinear complexity measure which can efficiently distinguish regular and complex nature of any signal and extract information about the change in dynamics of the process by indicating sudden change in its value. Here we propose the use of permutation entropy (PE), to detect the dynamical changes in two non linear processes, turning under mechanical system and speech under biological system.Effectiveness of PE in detecting the change in dynamics in turning process from the time series generated with samples of audio and current signals is studied. Experiments are carried out on a lathe machine for sudden increase in depth of cut and continuous increase in depth of cut on mild steel work pieces keeping the speed and feed rate constant. The results are applied to detect chatter onset in machining. These results are verified using frequency spectra of the signals and the non linear measure, normalized coarse-grained information rate (NCIR).PE analysis is carried out to investigate the variation in surface texture caused by chatter on the machined work piece. Statistical parameter from the optical grey level intensity histogram of laser speckle pattern recorded using a charge coupled device (CCD) camera is used to generate the time series required for PE analysis. Standard optical roughness parameter is used to confirm the results.Application of PE in identifying the vocal disorders is studied from speech signal recorded using microphone. Here analysis is carried out using speech signals of subjects with different pathological conditions and normal subjects, and the results are used for identifying vocal disorders. Standard linear technique of FFT is used to substantiate thc results.The results of PE analysis in all three cases clearly indicate that this complexity measure is sensitive to change in regularity of a signal and hence can suitably be used for detection of dynamical changes in real world systems. This work establishes the application of the simple, inexpensive and fast algorithm of PE for the benefit of advanced manufacturing process as well as clinical diagnosis in vocal disorders.
Resumo:
Quantile functions are efficient and equivalent alternatives to distribution functions in modeling and analysis of statistical data (see Gilchrist, 2000; Nair and Sankaran, 2009). Motivated by this, in the present paper, we introduce a quantile based Shannon entropy function. We also introduce residual entropy function in the quantile setup and study its properties. Unlike the residual entropy function due to Ebrahimi (1996), the residual quantile entropy function determines the quantile density function uniquely through a simple relationship. The measure is used to define two nonparametric classes of distributions
Resumo:
Recently, cumulative residual entropy (CRE) has been found to be a new measure of information that parallels Shannon’s entropy (see Rao et al. [Cumulative residual entropy: A new measure of information, IEEE Trans. Inform. Theory. 50(6) (2004), pp. 1220–1228] and Asadi and Zohrevand [On the dynamic cumulative residual entropy, J. Stat. Plann. Inference 137 (2007), pp. 1931–1941]). Motivated by this finding, in this paper, we introduce a generalized measure of it, namely cumulative residual Renyi’s entropy, and study its properties.We also examine it in relation to some applied problems such as weighted and equilibrium models. Finally, we extend this measure into the bivariate set-up and prove certain characterizing relationships to identify different bivariate lifetime models
Resumo:
Di Crescenzo and Longobardi (2002) introduced a measure of uncertainty in past lifetime distributions and studied its relationship with residual entropy function. In the present paper, we introduce a quantile version of the entropy function in past lifetime and study its properties. Unlike the measure of uncertainty given in Di Crescenzo and Longobardi (2002) the proposed measure uniquely determines the underlying probability distribution. The measure is used to study two nonparametric classes of distributions. We prove characterizations theorems for some well known quantile lifetime distributions
Resumo:
In the present paper, we introduce a quantile based Rényi’s entropy function and its residual version. We study certain properties and applications of the measure. Unlike the residual Rényi’s entropy function, the quantile version uniquely determines the distribution
Resumo:
The present study focuses attention on defining certain measures of income inequality for the truncated distributions and characterization of probability distributions using the functional form of these measures, extension of some measures of inequality and stability to higher dimensions, characterization of bivariate models using the above concepts and estimation of some measures of inequality using the Bayesian techniques. The thesis defines certain measures of income inequality for the truncated distributions and studies the effect of truncation upon these measures. An important measure used in Reliability theory, to measure the stability of the component is the residual entropy function. This concept can advantageously used as a measure of inequality of truncated distributions. The geometric mean comes up as handy tool in the measurement of income inequality. The geometric vitality function being the geometric mean of the truncated random variable can be advantageously utilized to measure inequality of the truncated distributions. The study includes problem of estimation of the Lorenz curve, Gini-index and variance of logarithms for the Pareto distribution using Bayesian techniques.
Resumo:
The present study on chaos and fractals in general topological spaces. Chaos theory originated with the work of Edward Lorenz. The phenomenon which changes order into disorder is known as chaos. Theory of fractals has its origin with the frame work of Benoit Mandelbrot in 1977. Fractals are irregular objects. In this study different properties of topological entropy in chaos spaces are studied, which also include hyper spaces. Topological entropy is a measures to determine the complexity of the space, and compare different chaos spaces. The concept of fractals can’t be extended to general topological space fast it involves Hausdorff dimensions. The relations between hausdorff dimension and packing dimension. Regular sets in Metric spaces using packing measures, regular sets were defined in IR” using Hausdorff measures. In this study some properties of self similar sets and partial self similar sets. We can associate a directed graph to each partial selfsimilar set. Dimension properties of partial self similar sets are studied using this graph. Introduce superself similar sets as a generalization of self similar sets and also prove that chaotic self similar self are dense in hyper space. The study concludes some relationships between different kinds of dimension and fractals. By defining regular sets through packing dimension in the same way as regular sets defined by K. Falconer through Hausdorff dimension, and different properties of regular sets also.
Resumo:
Department of Statistics, Cochin University of Sciene ans Technology
Resumo:
In this thesis, the concept of reversed lack of memory property and its generalizations is studied.We we generalize this property which involves operations different than the ”addition”. In particular an associative, binary operator ” * ” is considered. The univariate reversed lack of memory property is generalized using the binary operator and a class of probability distributions which include Type 3 extreme value, power function, reflected Weibull and negative Pareto distributions are characterized (Asha and Rejeesh (2009)). We also define the almost reversed lack of memory property and considered the distributions with reversed periodic hazard rate under the binary operation. Further, we give a bivariate extension of the generalized reversed lack of memory property and characterize a class of bivariate distributions which include the characterized extension (CE) model of Roy (2002a) apart from the bivariate reflected Weibull and power function distributions. We proved the equality of local proportionality of the reversed hazard rate and generalized reversed lack of memory property. Study of uncertainty is a subject of interest common to reliability, survival analysis, actuary, economics, business and many other fields. However, in many realistic situations, uncertainty is not necessarily related to the future but can also refer to the past. Recently, Di Crescenzo and Longobardi (2009) introduced a new measure of information called dynamic cumulative entropy. Dynamic cumulative entropy is suitable to measure information when uncertainty is related to the past, a dual concept of the cumulative residual entropy which relates to uncertainty of the future lifetime of a system. We redefine this measure in the whole real line and study its properties. We also discuss the implications of generalized reversed lack of memory property on dynamic cumulative entropy and past entropy.In this study, we extend the idea of reversed lack of memory property to the discrete set up. Here we investigate the discrete class of distributions characterized by the discrete reversed lack of memory property. The concept is extended to the bivariate case and bivariate distributions characterized by this property are also presented. The implication of this property on discrete reversed hazard rate, mean past life, and discrete past entropy are also investigated.
Resumo:
This thesis lays importance in the preparation and characterization of a few selected representatives of the ferrite family in the nanoregime. The candidates being manganese zinc ferrite and cobalt ferrite prepared by coprecipitation and sol-gel combustion techniques respectively. The thesis not only stresses importance on the preparation techniques and optimization of the reaction conditions, but emphasizes in investigating the various properties namely structural, magnetic and electrical. Passivated nickel nanocomposites are synthesized using polystyrene beads and adopting a novel route of ion exchange reduction. The structural and magnetic properties of these magnetic nanocomposites are correlated. The magnetocaloric effect (MCE) exhibited by these materials are also investigated with a view to finding out the potential of these materials as magnetic refrigerants. Calculations using numerical methods are employed to evaluate the entropy change on selected samples.
Resumo:
Using laser transmission, the characteristics of hydrodynamic turbulence is studied following one of the recently developed technique in nonlinear dynamics. The existence of deterministic chaos in turbulence is proved by evaluating two invariants viz. dimension of attractor and Kolmogorov entropy. The behaviour of these invariants indicates that above a certain strength of turbulence the system tends to more ordered states.
Resumo:
It is shown that the invariant integral, viz., the Kolmogorov second entropy, is eminently suited to characterize EEG quantitatively. The estimation obtained for a "clinically normal" brain is compared with a previous result obtained from the EEG of a person under epileptic seizure.