24 resultados para Stern-Volmer quenching
Resumo:
Gamma amino outyric acid is a major inhibitory neurotrarsr titter in the central nervous system. In the preset study sv, Have investigate(' the alteration of GABA receptor, In t he hrain stem of rats during pancreatic regeneration. Three groups of rats were used for the study: sham operated, 72 It and 7 days partially pancreatectonnsea. GABA was (juan- (ified by [H]GABA receptor iispiacement method. GABA receptor kin: 10, pat at i et•ers were studied by using the binding of F'.](iAhA as ligand to the Triton X-100 treated me,i1,;-:mes a1,J displacement with unlabelled GABA. GhRA,v receptor activity was studied by using the [` -1 h3cuculline and displacement with unlabellecV euculline. ;.\13A content significantly decreased (1' < (1.(101 ) it, 0-e brain stern during the regeneration of pancreas. 'I hl, high affinity (IAI3A receptor binding sho?:ed it sigii'f cant decrease in 131„.,\ (P < 11.01) and K,I 1).05) n 72 h and 7 days after partial pancreatee 'timv. ";:flhicuculline hin(Iing showed it signih eat, 'le ( r(, :,e in /Jn1,s and K,I (P < 0.001) in 72 h pa^.rcreaw,, mised rats when compared with sham wt--tt' as P,n and K,I reversed to near sham after 7 da,s of pancreatectomv. The results sugge,) that GAB A throur,r; ('GABA receptors in brain Atcem has a regulatory uie during active regeneration of pancreas which will have inunense clinical significance in the treatment of cliahetcs.
Resumo:
Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus smithii , and fibrin alginolvticus, a Gram- negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smithii was observed . The effect of dye on the samples was also studied in detail.
Resumo:
Optical fiber based laser induced fluorescence (LIF) measurements were carried out using Rhodamine B to analyze two different species of bacteria , a Gram-positive bacteria namely Bacillus .cmithii , and fibrin alginolvticus, a Gram-' negative bacteria . The fiber sensor was clearly able to distinguish between the two species of bacteria . Quenching effect of the dye Rhodamine B by Bacillus smitltii was observed . The effect of dye on the samples was also studied in detail.
Resumo:
The growth kinetics of an aerial bacterial colony on solid agar media was studied using laser induced fluorescence technique. Fluorescence quenching of Rhodamin B by the bacterial colony was utilized for the study. The lag phase, log phase, and stationary phase of growth curve of bacterial colony was identified by measuring peak fluorescence intensity of dye doped bacterial colony.
Resumo:
In this thesis, we report our endeavours in the synthesis of a few polycyclic compounds. We were interested in the synthesis of a few bicyclic compounds designed to undergo interesting photochemical transformations including tripletmediated di-π-methane rearrangement and/or competing singlet-mediated electrocyclic reactions. Our target molecules have "inbuilt" structural features which will potentially alter the photochemistry of the substrate under consideration.The present investigation was undertaken to test our hypothesis on selective intramolecular quenching of singlet or triplet excited states of molecules.We adopted Dies-Alder reaction for the synthesis of several of the bicyclic compounds we were interested in. Some of the precursor dienes synthesised by us are capable of undergoing intramolecular cycloaddition reactions as well. So, it was important to delineate the conditions and structural features that will enable a particular molecule to undergo intermolecular and intramolecular Dies-Alder reaction when treated with a suitable dienophile.Though, the main focus of this thesis is on the synthesis of bicyclic and tricyclic systems capable of undergoing di-π-methane rearrangement, in the last chapter of this thesis, we describe our findings on the synthesis of a few dispirocompounds. These systems were encountered as unexpected products in the attempted synthesis of novel dibenzoylalkene-type systems. Consequently, a brief survey on the synthesis and transformations of dibenzoylalkenes is also included as an integral part of this thesis.
Resumo:
In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.
Resumo:
The effect of pH on the fluorescence efficiency of fluorescein is evaluated using thermal lens technique. Fluorescence efficiency increases as the sample becomes more and more alkaline. But when fluorescein is mixed with rhodamine B fluorescence quenching of fluorescein takes place with the excitation of rhodamine B. The electronic energy transfer in this mixture is investigated using Optical Parametric Oscillator as the excitation source. The effect of pH on the efficiency of energy transfer in fluorescein–rhodamine B mixture is presented.
Resumo:
Dependence of energy transfer parameters on excitation wavelength has been investigated in poly (methyl methacrylate) (PMMA) optical fibre preforms doped with C 540:Rh B dye mixture by studying the fluorescence intensity and the lifetime variations. A fluorescence spectrophotometer was used to record the excitation spectra of the samples for the emission wavelengths 495 and 580 nm. The fluorescence emission from the polymer rods was studied at four specific excitation wavelengths viz; 445, 465, 488 and 532 nm. The fluorescence lifetime of the donor molecule was experimentally measured in polymer matrix by time correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed for three excitation wavelengths. It was found that any change in the excitation wavelength leads to significant variations in the quenching characteristics, which in turn affect the calculated energy transfer parameters.
Resumo:
The dual-beam thermal lens technique has been found to be very effective for the measurement of fluorescence quantum yields of dye solutions. The concentration-dependence of the quantum yield of rhodamine B in methanol is studied here using this technique. The observed results are in line with the conclusion that the reduction in the quantum yield in the quenching region is essentially due to the non-radiative relaxation of the absorbed energy. The thermal lens has been found to become abberated above 40 mW of pump laser power. This low value for the upper limit of pump power is due to the fact that the medium is a resonantly absorbing one.
Resumo:
In this paper we report the use of the dual beam thermal lens technique as a quantitative method to determine absolute fluorescence quantum efficiency and concentration quenching of fluorescence emission from rhodamine 6G doped Poly(methyl methacrylate) (PMMA), prepared with different concentrations of the dye. A comparison of the present data with that reported in the literature indicates that the observed variation of fluorescence quantum yield with respect to the dye concentration follows a similar profile as in the earlier reported observations on rhodamine 6G in solution. The photodegradation of the dye molecules under cw laser excitation is also studied using the present method.
Resumo:
Experimental method for measuring photoacoustic(PA) signals generated by a pulsed laser beam in liquids is described. The pulsed PA technique is found to be a convenient and accurate method for determination of quantum yield in fluorescent dye solutions. Concentration dependence of quantum yield of rhodamine 6G in water is studied using the above method. The results indicate that the quantum yield decreases with increase in concentration in the quenching region in agreement with the existing reports based on radiometric measurements.
Resumo:
Pulsed photoacoustic technique which is found to be a very convenient and accurate method, is used for the determination of absolute fluorescence quantum yield of laser dye rhodamine B. Concentration and power dependence of quantum yield of rhodamine B in methanol for excitation at 532 nm is reported here. Results show that a rapid decrease in quantum yield as the concentration is increased and finally it reaches the limit corresponding to fluorescence quenching.
Resumo:
Variations in the decay times of the characteristic green emissions at 522.7, 551.3, 549.6, 547.6, 542.2, 540.2, 535.9 and 533.5nm from CaF2 :H03+ with concentration are studied at RT and LNT. A pulsed N2 laser beam of power density 1.5 MW cm-2 is used for the excitation. Temperature dependent concentration quenching of the decay times are observed for all the emission bands. But an increase in the decay time due to the reabsorption process is also observed for a few of the above bands.