16 resultados para River Seixe
Resumo:
The proposed study is an attempt to quantify and study the seasonal and spatial variations in the distribution of Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb among the various geochemical phases in the surficial sediments of Chitrapuzha river. The study also estimates the concentration of heavy metals in dissolved, particulate and sediments and their variation in seasonal and spatial distribution. Chitrapuzha River originates as a small stream from the upper reaches of high ranges in the eastern boundary of Kerala, passes through the valley and finally joints in the Cochin backwaters. Numerous industrial units located along the banks of the river discharge treated and untreated effluents into the water. These are long standing local complaints about water pollution causing fish mortality and serious damage to agricultural crops resulting in extensive unemployment in the area. The river is thus of considerable social and economic importance.
Resumo:
The present investigation on the Muvattupuzha river basin is an integrated approach based on hydrogeological, geophysical, hydrogeochemical parameters and the results are interpreted using satellite data. GIS also been used to combine the various spatial and non-spatial data. The salient finding of the present study are accounted below to provide a holistic picture on the groundwaters of the Muvattupuzha river basin. In the Muvattupuzha river basin the groundwaters are drawn from the weathered and fractured zones. The groundwater level fluctuations of the basin from 1992 to 2001 reveal that the water level varies between a minimum of 0.003 m and a maximum of 3.45 m. The groundwater fluctuation is affected by rainfall. Various aquifer parameters like transmissivity, storage coefficient, optimum yield, time for full recovery and specific capacity indices are analyzed. The depth to the bedrock of the basin varies widely from 1.5 to 17 mbgl. A ground water prospective map of phreatic aquifer has been prepared based on thickness of the weathered zone and low resistivity values (<500 ohm-m) and accordingly the basin is classified in three phreatic potential zones as good, moderate and poor. The groundwater of the Muvattupuzha river basin, the pH value ranges from 5.5 to 8.1, in acidic nature. Hydrochemical facies diagram reveals that most of the samples in both the seasons fall in mixing and dissolution facies and a few in static and dynamic natures. Further study is needed on impact of dykes on the occurrence and movement of groundwater, impact of seapages from irrigation canals on the groundwater quality and resources of this basin, and influence of inter-basin transfer of surface water on groundwater.
Resumo:
The present work deals with the texture, mineralogy and geochemistry of bedload sediments of the main stream of the Chaliyar basin, a typical small drainage system of the tropics enjoying heavy rain fall and moderate climate, located essentially in the Northern Kerala and flowing over the crystalline rocks (and their laterized duricrust) of the South Indian granulite terrain. As the Chaliyar is the major river draining the Wynad Gold Fields and is known for its placer gold occurrences, the thesis gives special emphasize on understanding the nature and distribution of detrital gold in sediments of the basin, while attempting to infer the provenance characteristics and factors involved in the evolution of sediments in general. Minerologically the chaliyar basin sands are quartzose. The quartz and feldspar contents in the coarse sand fraction of the basin range from 64 to 86% and 2 to 16% respectively. The Q/F ration ranges from 4 to 38 with a slight decrease in the lower reaches. Other minerals present include, hornblende, pyroxene and heavy minerals like opaques, garnet, rutile, biotite, spene, silliminite, zircon, apatite and monazite some of which are seen as inclusions in quartz. The major element composition of Chaliyar bedload sediments in the main channel and the headwater tributaries is related to the mineralogical and textual characteristics of sediments.
Resumo:
It is proposed to study the suspended sediment transport characteristics of river basins of Kerala and to model suspended sediment discharge mechanism for typical micro-watersheds. The Pamba river basin is selected as a representative hydrologic regime for detailed studies of suspended sediment characteristics and its seasonal variation. The applicability of various erosion models would be tested by comparing with the observed event data (by continuous monitoring of rainfall, discharge, and suspended sediment concentration for lower order streams). Empirical, conceptual and physically distributed models were used for making the comparison of performance of the models. Large variations in the discharge and sediment quantities were noticed during a particular year between the river basins investigated and for an individual river basin during the years for which the data was available. In general, the sediment yield pattern follows the seasonal distribution of rainfall, discharge and physiography of the land. This confirms with similar studies made for other Indian rivers. It was observed from this study, that the quantity of sediment transported downstream shows a decreasing trend over the years corresponding to increase in discharge. For sound and sustainable management of coastal zones, it is important to understand the balance between erosion and retention and to quantify the exact amount of the sediments reaching this eco-system. This, of course, necessitates a good length of time series data and more focused research on the behaviour of each river system, both present and past. In this realm of river inputs to ocean system, each of the 41 rivers of Kerala may have dominant yet diversified roles to influence the coastal ecosystem as reflected from this study on the major fraction of transport, namely the suspended sediments
Resumo:
Dept.of Marine Geology & Geophysics, Cochin University of Sceince and Technology
Resumo:
The present study which is the first of its kind in this region is an attempt to generate adequate information on the relative abundances, the seasonal and spatial variations as well as on the source and fate of organic compounds found associated with the dissolved, particulate and sedimentary compartments of Chalakudy river system. The study aimed at investigating variations, the relative proportion of dissolved, particulate and sedimentary fractions of these materials as well as the pollution extent so as to be able to comment on the present condition of this river-estuarine system. This thesis focuses attention on the role of biogeoorganics in modifying the ecological and environmental condition of the dissolved, particuIate and sediment compartments with their minute variability subjected to various physical, chemical and biogeochemical processes. A scheme of study encompassing all these objectives provides the frame work for the present investigation.
Resumo:
Drainage basins are durable geomorphic features that provide insights into the long term evolution of the landscape. River basin geometry develop response to the nature and distribution of uplift and subsidence, the spatial arrangement of lineaments (faults and joints), the relative resistance of different rock types and to climatically influenced hydrological parameters . For developing a drainage basin evolution history, it is necessary to understand physiography, drainage patterns, geomorphic features and its structural control and erosion status. The present study records evidences for active tectonic activities which were found to be responsible for the present day geomorphic set up of the study area since the Western Ghat evolution. A model was developed to explain the evolution of Chaliar River drainage basin based on detailed interpretation of morphometry and genesis of landforms with special emphasis on tectonic geomorphic indices and markers.
Resumo:
This study was aimed at to characterize the spatio-temporal trends in the distributional characteristics of various species of nitrogen and phosphorus as well as to elucidate the factors and processes aflecting these nutrients in the dissolved, particulate and sedimentary phases of a river estuarine system. The main area of study is Chalakudy river in Kerala, which is a fresh water system originating from Anamalai hills and ending at Arabian Sea. Its basin is between I00 05 ’ to I00 35’ North latitude and 76” 15 ’ to 760 55’ East longitude. Being a riparian bufler zone, the dynamics of nutrient mobility tend to be more complex and variable in this river-estuarine system.The diflerent species of nitrogen estimated from the filtrate were nitrite-N, nitrateN, ammonia-N, urea-N, total nitrogen and residual nitrogen. The diflerent forms of phosphorus estimated from the filtrate were phosphate-P, total-P and residualP. Pre weighed sediments as well as particulate matter were analysed for quantijying nitrite-N, nitrate-N, ammonia-N and urea-N. Total nitrogen was estimated after digestion with potassium persulfate. Fractionation of phosphorus in sediment/particulate matter was performed by applying sequential extraction procedure. The dijferent forms of phosphorus thus estimated were loosely bound (exchangeable) P, Fe/Al bound P, polyphosphates, Ca bound P and refractory P. Sedimental total P was also measured directly by applying digestion method.The analyses carried out in this bimonthly annual survey have revealed specific information on the latent factors influencing the water quality pattern ofthe river. There was dependence among the chemical components of the river sediment and suspended matter, reflecting the water quality. A period of profound environmental change occurred and changes in various species had been noted in association with seasonal variations in the waterway, especially following enhanced river runoff during the monsoon. The results also successfully represented the distribution trend of nutrients during the rainy as well as dry season. Thus, the information gathered in this work will also be beneficial for those interested or involved in river management, conservation, regulation and policy making in regional and national levels.
Resumo:
The present work deals with the An integrated study on the hydrogeology of Bharathapuzha river basin ,south west coast of india. To study the spatial and temporal behaviour of the groundwater system of the Bharathapuzha river basin.To discover the sub-surface parameter by ground resistivity surveys.T o determine the groundwater quality of the Bharathapuzha river basin for the different seasons {pre monsoon and post monsoon with reference to the domestic and irrigational water quality standards.Present study will provide a good database on the hydrogeological aspects within the river basin.The study area covers l7 block Panchayats. Of these, Chitoor block is ‘over exploited’, Kollengode, Trithala, and Palakkad are ‘critical’ in category and Kuttippuram and Sreekrishnapuram blocks are ‘semi critical’ in terms of groundwater development.Comparison of Geomorphology map with drainage map shows that the geomorphology has a clear control on the drainage net work of the basin. The structural hill area shows a highest drainage network, where as pediment shows lowest drainage network.There are many discontinuous lineament in the Bharathapuzha river basin which can be connected by a straight line.Ground water flow directions are generally towards the western portions of the study area. From the northern region Water flows towards the central and also water from the eastern and southern side confluences at the centre and move towards western side of the basin.The positive correlation of transmissivity and storativity values show good aquifer conditions exists in the present study area .
Resumo:
The thesis entitled Growth Response of Phytoplankton Exposed to Industrial Effluents in River Periyar. The present investigation has been conducted in two phases: field observation and algal assays. The monthly distribution of hydrographic features is represented graphically. The sampling year has been divided into three seasons: monsoon (June to September), postmonsoon (October to January) and premonsoon (February to May). The data were analysed using Student's t-test to find whether there was any significant difference between surface and bottom samples. The spatial variation of the variables was assessed by Page's L (trend) test (Ray Meddis, 1975). The standard procedure for algal toxicity test (Ward and Parrish, 1982) was followed throughout the study. Statistical analysis (Page's L (trend) test) showed that there was no significant difference in Secchi disc transparency between the stations. The field observations as well as the laboratory assays confirm that the rate of discharge in river Periyar during premonsoon is insufficient to effect dilution of wastewater received in the industrial zone.
Resumo:
Hydrodynamic characteristics of an estuary resulting from interaction of tide and river runoff are important since problems regarding flood, salinity intrusion, water quality, ecosystem and sedimentation are ubiquitous. The present study focuses on such hydrodynamic aspects in the Cochin estuary. Most of the estuaries that come under the influence of Indian Summer Monsoon and for which the salinity is never in a steady state at any time of the year are generally shallow and convergent, i.e. the width decreases rapidly from mouth to head. In contrast, Cochin estuary is wider towards the upstream and has no typical river mouth, where the rivers are joining the estuary along the length of its channel .Adding to the complexity it has dual inlets and the tidal range is 1 m which is lower than other Indian estuaries along west coast. These typical physical features lead to its unique hydrodynamic characteristics. Therefore the thesis objectives are: I) to study the influence of river runoff on tidal propagation using observations and a numerical model ii) to study stratification and property distributions in Cochin estuary iii) to understand salinity distributions and flushing characteristics iv) to understand the influence of saltwater barrage on tides and salinity v) To evaluate several classification schemes for the estuary