18 resultados para QUASI-CRYSTALS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis investigated the elastic properties and phase transitions in selected mixed sulphate crystals – Lithium Hydrazinium Sulphate [LiN2H2SO4], Lithium Ammonium Sulphate [LiNH4SO4] and Lithium Potassium Sulphate [LiKSO4] – using ultrasonic technique. The pulse echo overlap technique has been used for measuring ultrasonic velocity and its dependence on temperature along different directions with waves of longitudinal and transverse polarizations. Two major numerical techniques and the corresponding computer programs developed as part of present work are presented in this thesis. All the 9 elastic constants of LHS are determined accurately from ultrasonic measurements and applying misorientation correction refines the constants. Ultrasonic measurements are performed in LAS to determine the elastic constants and to study the low temperature phase transitions. Temperature variation studies of elastic constant of LAS are performed for 6 different modes of propagation for heating and cooling at low temperatures. All the 5 independent elastic constants of LPS is determined using ultrasonic measurements. It is concluded that LPS crystal does not undergo a phase transition near this temperature. A comparison of the three crystals studied shows that LPS has maximum number of phase transitions and LHS has the least number. It is interesting to note that LPS has the simplest formula unit among the three. There is considerable scope for the future work on these crystals and others belonging to the sulphate family.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic is a good tool to investigate the elastic properties of crystals. It enables one to determine all the elastic constants, Poisson’s ratios, volume compressibility and bulk modulus of crystals from velocity measurements. It also enables one to demonstrate the anisotropy of elastic properties by plotting sections of the surfaces of phase velocity, slowness, group velocity, Young’s modulus and linear compressibility along the a-b, b-c and a-c planes. They also help one to understand more about phonon amplification and help to interpret various phenomena associated with ultrasonic wave propagation, thermal conductivity, phonon transport etc. Study of nonlinear optical crystals is very important from an application point of view. Hundreds of new NLO materials are synthesized to meet the requirements for various applications. Inorganic, organic and organometallic or semiorganic classes of compounds have been studied for several reasons. Semiorganic compounds have some advantages over their inorganic and inorganic counterparts with regard to their mechanical properties. High damage resistance, high melting point, good transparency and non-hygroscopy are some of the basic requirements for a material to be suitable for device fabrication. New NLO materials are being synthesized and investigation of the mechanical and elastic properties of these crystals is very important to test the suitability of these materials for technological applications

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe the use of an open cell photoacoustic configuration for the evaluation of the thermal effusivity of liquid crystals. The feasibility, precision and reliability of the method are initially established by measuring the thermal effusivities of water and glycerol, for which the effusivity values are known accurately. In order to demonstrate the use of the present method in the thermal characterization of liquid crystals, we have measured the thermal effusivity values in various mesophases of 4-cyano-4 - octyloxybiphenyl (8OCB) and 4-cyano-4 -heptyloxybiphenyl (7OCB) liquid crystals using a variable temperature open photoacoustic cell. A comparison of the measured values for the two liquid crystals shows that the thermal effusivities of 7OCB in the nematic and isotropic phases are slightly less than those of 8OCB in the corresponding phases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe the use of an open cell photoacoustic configuration for the evaluation of the thermal effusivity of liquid crystals. The feasibility, precision and reliability of the method are initially established by measuring the thermal effusivities of water and glycerol, for which the effusivity values are known accurately. In order to demonstrate the use of the present method in the thermal characterization of liquid crystals, we have measured the thermal effusivity values in various mesophases of 4-cyano-4 - octyloxybiphenyl (8OCB) and 4-cyano-4 -heptyloxybiphenyl (7OCB) liquid crystals using a variable temperature open photoacoustic cell. A comparison of the measured values for the two liquid crystals shows that the thermal effusivities of 7OCB in the nematic and isotropic phases are slightly less than those of 8OCB in the corresponding phases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe the use of an open cell photoacoustic configuration for the evaluation of the thermal effusivity of liquid crystals. The feasibility, precision and reliability of the method are initially established by measuring the thermal effusivities of water and glycerol, for which the effusivity values are known accurately. In order to demonstrate the use of the present method in the thermal characterization of liquid crystals, we have measured the thermal effusivity values in various mesophases of 4-cyano-4 - octyloxybiphenyl (8OCB) and 4-cyano-4 -heptyloxybiphenyl (7OCB) liquid crystals using a variable temperature open photoacoustic cell. A comparison of the measured values for the two liquid crystals shows that the thermal effusivities of 7OCB in the nematic and isotropic phases are slightly less than those of 8OCB in the corresponding phases

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of stability of black hole was first studied by Regge and Wheeler who investigated linear perturbations of the exterior Schwarzschild spacetime. Further work on this problem led to the study of quasi-normal modes which is believed as a characteristic sound of black holes. Quasi-normal modes (QNMs) describe the damped oscillations under perturbations in the surrounding geometry of a black hole with frequencies and damping times of oscillations entirely fixed by the black hole parameters.In the present work we study the influence of cosmic string on the QNMs of various black hole background spacetimes which are perturbed by a massless Dirac field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastic properties of sodium doped Lithium potassium sulphate, LiK0.9Na0.1SO4, crystal has been studied by ultrasonic Pulse Echo Overlap [PEO] technique and are reported for the first time. The controversy regarding the type of crystal found while growth is performed at 35 °C with equimolar fraction of Li2SO4H2O, K2SO4 and Na2SO4 has been resolved by studying the elastic properties. The importance of this crystal is that it exhibits pyroelectric, ferroelectric and electro optic properties. It is simultaneously ferroelastic and superionic. The elastic properties of LiK0.9Na0.1SO4 crystal are well studied by measuring ultrasonic velocity in the crystal in certain specified crystallographic directions and evaluating the elastic stiffness constants, compliance constants and Poisson’s ratios. The anisotropy in the elastic properties of the crystal are well explained by the pictorial representation of the surface plots of phase velocity, slowness and linear compressibility in a-b and a-c planes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-alkyl-2,6-dimethyl-4(1H)-pyridinones, salts of 4-dimethylaminopyridine and 2-amino-5-nitropyridine are considered to be potential candidates for nonlinear optical (NLO) applications, in particular for the generation of blue-green laser radiation. Single crystals were grown following the slow evaporation technique at constant temperature. Single-shot laserinduced surface damage thresholds in the range 3–10 GW/cm2 were measured using a 18 ns Q-switched Nd:YAG laser. The surface morphologies of the damaged crystals were examined under an optical microscope and the nature of damage identified. The Vicker’s microhardness was determined at a load of 98.07 mN. The thermal transport properties, thermal diffusivity (α), thermal effusivity (e), thermal conductivity (K) and heat capacity (Cp), of the grown crystals were measured by an improved photopyroelectric technique at room temperature. All the results are presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Certain organic crystals are found to possess high non- linear optical coefficients,often one to two orders of magnitude higher than those of the well known inorganic non-linear optical materials.Benzoyl glycine is one such crystal whose optical second-harmonic generation efficiency is much higher than that of potassium dihydrogen phosphate. Single crystals of benzoyl glycine are grown by solvent evaporation technique using N,N-dimethyl formamide as the solvent.All the nine second-order elastic stiffness constants of this orthorhombic crystal are determined from ultrasonic wave velocity measurements employing the pulse echo overlap technique.The anisotropy of elastic wave propagation in this crystal is demonstrated by plotting the phase velocity, slowness,Young's modulus and linear compressibility surfaces along symmetry planes.The volume compressibility, bulk modulus and relevant Poisson's ratios are also determined. Variation of the diagonal elastic stiffness constants with temperature over a limited range are measured and reported.