23 resultados para Parametric excitation
Resumo:
This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.
Resumo:
A new configuration that employs a conducting conformal strip to excite the low-profile equilaterial-triangular dielectric resonator antenna (DRA) of very high permittivity is proposed. As compared with the previous aperture-coupling configuration, the new configuration has a wider impedance bandwidth (- 5.5%) and a higher front-to-back radiation ratio. The return loss, radiation patterns, and antenna gain are measured and discussed
Resumo:
In this paper, the fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength. We have found that excitation at the tail of the absorption band gives rise to an emission that shifts with the change of the excitation wavelength. The excitation wavelength dependent shift of the fluorescence maximum is measured to be between 60 and 100 nm. This kind of excitation wavelength dependent fluorescence behaviour, which may appear to be in violation of Kasha’s rule of excitation wavelength independence of the emission spectrum, has been observed for nano ZnO colloids prepared by two different chemical routes and different capping agents. It is shown that the existence of a distribution of energetically different molecules in the ground state coupled with a low rate of the excited state relaxation processes, namely, solvation and energy transfer, are responsible for the excitation wavelength dependent fluorescence behaviour of the systems.
Resumo:
In this paper, the fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength. We have found that excitation at the tail of the absorption band gives rise to an emission that shifts with the change of the excitation wavelength. The excitation wavelength dependent shift of the fluorescence maximum is measured to be between 60 and 100 nm. This kind of excitation wavelength dependent fluorescence behaviour, which may appear to be in violation of Kasha’s rule of excitation wavelength independence of the emission spectrum, has been observed for nano ZnO colloids prepared by two different chemical routes and different capping agents. It is shown that the existence of a distribution of energetically different molecules in the ground state coupled with a low rate of the excited state relaxation processes, namely, solvation and energy transfer, are responsible for the excitation wavelength dependent fluorescence behaviour of the systems.
Resumo:
The wavelength dependence of thermal lens signal from organic dyes are studied using dual beam thermal lens technique. It is found that the profile of thermal lens spectrum widely differ from the conventional absorption spectrum in the case of rhodamine B unlike in the case of crystal violet. This is explained on the basis of varying contribution of nonradiative relaxations from the excited vibronic levels.
Resumo:
The effect of pH on the fluorescence efficiency of fluorescein is evaluated using thermal lens technique. Fluorescence efficiency increases as the sample becomes more and more alkaline. But when fluorescein is mixed with rhodamine B fluorescence quenching of fluorescein takes place with the excitation of rhodamine B. The electronic energy transfer in this mixture is investigated using Optical Parametric Oscillator as the excitation source. The effect of pH on the efficiency of energy transfer in fluorescein–rhodamine B mixture is presented.
Resumo:
Dependence of energy transfer parameters on excitation wavelength has been investigated in poly (methyl methacrylate) (PMMA) optical fibre preforms doped with C 540:Rh B dye mixture by studying the fluorescence intensity and the lifetime variations. A fluorescence spectrophotometer was used to record the excitation spectra of the samples for the emission wavelengths 495 and 580 nm. The fluorescence emission from the polymer rods was studied at four specific excitation wavelengths viz; 445, 465, 488 and 532 nm. The fluorescence lifetime of the donor molecule was experimentally measured in polymer matrix by time correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed for three excitation wavelengths. It was found that any change in the excitation wavelength leads to significant variations in the quenching characteristics, which in turn affect the calculated energy transfer parameters.
Photoemission optogalvanic effect studies in N2, NO2 and Ar discharges under pulsed laser excitation
Resumo:
A two-photon induced photoemission optogalvanic effect which brings about a change in the discharge voltage when a pulsed dye laser beam is focused on a tungsten electrode has been described. The experiment is performed with N2, NO2 and Ar discharges. The magnitude of the signal voltage is studied as a function of laser energy and discharge current. The effective quantum efficiency in the discharge is found to be larger than that in the vacuum condition.
Photoemission optogalvanic effect studies in N2, NO2 and Ar discharges under pulsed laser excitation
Resumo:
A two-photon induced photoemission optogalvanic effect which brings about a change in the discharge voltage when a pulsed dye laser beam is focused on a tungsten electrode has been described. The experiment is performed with N2, NO2 and Ar discharges. The magnitude of the signal voltage is studied as a function of laser energy and discharge current. The effective quantum efficiency in the discharge is found to be larger than that in the vacuum condition.
Resumo:
The wavelength dependence of thermal lens signal from organic dyes are studied using dual beam thermal lens technique. It is found that the profile of thermal lens spectrum widely differ from the conventional absorption spectrum in the case of rhodamine B unlike in the case of crystal violet. This is explained on the basis of varying contribution of nonradiative relaxations from the excited vibronic levels.
Resumo:
Two-photon excited (TPE) side illumination fluorescence studies in a Rh6G-RhB dye mixture doped polymer optical fiber (POF) and the effect of energy transfer on the attenuation coefficient is reported. The dye doped POF is pumped sideways using 800 nm, 70 fs laser pulses from a Ti:sapphire laser, and the TPE fluorescence emission is collected from the end of the fiber for different propagation distances. The fluorescence intensity of RhB doped POF is enhanced in the presence of Rh6G as a result of energy transfer from Rh6G to RhB. Because of the reabsorption and reemission process in dye molecules, an effective energy transfer is observed from the shorter wavelength part of the fluorescence spectrum to the longer wavelength part as the propagation distance is increased in dye doped POF. An energy transfer coefficient is found to be higher at shorter propagation distances compared to longer distances. A TPE fluorescence signal is used to characterize the optical attenuation coefficient in dye doped POF. The attenuation coefficient decreases at longer propagation distances due to the reabsorption and reemission process taking place within the dye doped fiber as the propagation distance is increased.
Resumo:
By introducing a periodic perturbation in the control parameter of the logistic map we have investigated the period locking properties of the map. The map then gets locked onto the periodicity of the perturbation for a wide range of values of the parameter and hence can lead to a control of the chaotic regime. This parametrically perturbed map exhibits many other interesting features like the presence of bubble structures, repeated reappearance of periodic cycles beyond the chaotic regime, dependence of the escape parameter on the seed value and also on the initial phase of the perturbation etc.