36 resultados para Nanostructured sensors
Resumo:
In this study Fabrication of Potentiometric sensors for the determination of certain metal ions, presents the synthesis and characterization of seven ionophores, their use in the fabrication of potentiometric sensors and the results and discussion of fourteen sensors developed for the determination of five transition metal ions. As part of the present investigations a total of fourteen potentiometric sensors have been developed and fabricated. A three fold approach has been taken in developing he sensors, PVC plasticized membrane sensor, carbon paste electrode and chemically modified carbon paste electrode. All the sensors are highly useful in the determination of metal ions such as manganese, nickel, copper, mercury and lead. A through analytical study has been carried out with respect to each other developed. Based on these studies, optimum conditions have been developed for the quantitative determinations of the selected metal ions using the sensors. Systematic application studies have also been carried out for all the developed sensors and the results revealed that the presently developed sensors are far superior than most of the sensors reported.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
In this communication, we discuss the details of fabricating an off-line fibre optic sensor (FOS) based on evanescent wave absorption for detecting trace amounts of Fe3+ in water. Two types of FOS are developed; one type uses the unclad portion of a multimode silica fibre as the sensing region whereas the other employs the microbent portion of a multimode plastic fibre as the sensing region. Sensing is performed by measuring the absorption of the evanescent wave in a reagent medium surrounding the sensing region. To evaluate the relative merits of the two types of FOS in Fe3+ sensing, a comparative study of the sensors is made, which reveals the superiority of the latter in many respects, such as smaller sensing length, use of a double detection scheme (for detecting both core and cladding modes) and higher sensitivity of cladding mode detection at an intermediate range of concentration along with the added advantage that plastic fibres are inexpensive. A detection limit of 1 ppb is observed in both types of fibre and the range of detection can be as large as 1 ppb–50 ppm. All the measurements are carried out using a LabVIEW set-up.
Resumo:
Metallic glass alloy Metglas 2826 MB based amorphous magnetic thin films were fabricated by the thermal evaporation technique. Transmission electron micrographs and electron diffraction pattern showed the amorphous nature of the films. Composition of the films was analyzed employing x-ray photoelectron spectroscopy and energy dispersive x-ray spectroscopy techniques. The film was integrated to a long period fibre grating. It was observed that the resonance wavelength of the fibre grating decreased with an increase in the magnetic field. Change in the resonance wavelength was minimal at higher magnetic fields. Field dependent magnetostriction values revealed the potential application of these films in magnetostrictive sensor devices
Resumo:
PVC supported liquid membrane and carbon paste potentiometric sensors incorporating an Mn(III)-porphyrin complex as a neutral host molecule were developed for the determination of paracetamol. The measurements were carried out in solution at pH 5.5. Under such conditions paracetamol exists as a neutral molecule. The mechanism of molecular recognition between the Mn(III)-porphyrin and paracetamol, leading to potentiometric signal generation, is discussed.The sensitivity and selectivity toward paracetamol of carbon paste and polymeric liquid membrane electrodes incorporating an Mn(III)-porphyrin host were compared. The applicability of these sensors to the direct determination of paracetamol was checked by performing a recovery test in human plasma.
Resumo:
The fabrication and analytical applications of two types of potentiometric sensors for the determination of ketoconazole (KET) are described. The sensors are based on the use of KET-molybdophosphoric acid (MPA) ion pair as electroactive material. The fabricated sensors include both polymer membrane and carbon paste electrodes. Both sensors showed a linear, stable and near Nernstian slope of 57.8mV=decade and 55.2mV=decade for PVC membrane and carbon paste sensors respectively over a relatively wide range of KET concentration (1×10-2-5×10-5 and 1×10-2-1×10-6). The sensors showed a fast response time of <30 sec and <45 sec. A useful pH range of 3–6 was obtained for both types of sensors. A detection limit of 2.96 10 5M was obtained for PVC membrane sensor and 6.91 10 6M was obtained for carbon paste sensor. The proposed sensors proved to have a good selectivity for KET with respect to a large number of ions. The proposed sensors were successfully applied for the determination of KET in pharmaceutical formulations. The results obtained are in good agreement with the values obtained by the standard method.
Resumo:
The design and fabrication of fiber based ammonia sensors employing Bromothymol blue and Chitosan as sensing elements are presented in this paper. In the presence of ammonia gas the absorption of Bromothymol blue changes while in the case of Chitosan the refractive index changes which in turn modulates the intensity of light propagating through a fiber.
Resumo:
International School of Photonics, Cochin University of Science and Technology
Resumo:
Advent of lasers together with the advancement in fiber optics technology has revolutionized the sensor technology. Advancement in the telemetric applications of optical fiber based measurements is an added bonus. The present thesis describes variety of fiber based sensors using techniques like micro bending, long period grating and evanescent waves. Sensors to measure various physical and chemical parameters are described in this thesis.
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
In recent years,photonics has emerged as an essential technology related to such diverse fields like laser technology,fiber optics,communication,optical signal processing,computing,entertainment,consumer electronics etc.Availabilities of semiconductor lasers and low loss fibers have also revolutionized the field of sensor technology including telemetry. There exist fiber optic sensors which are sensitive,reliable.light weight and accurate devices which find applications in wide range of areas like biomedicine,aviation,surgery,pollution monitoring etc.,apart from areas in basic sciences.The present thesis deals with the design,fabrication and characterization of a variety of cost effective and sensitive fiber optic sensors for the trace detetction of certain environment pollutants in air and water.The sensor design is carried out using the techniques like evanescent waves,micro bending and long period gratings.
Resumo:
Voltammetric sensors are an important class of electrochemical sensors in which the analytical information is obtained from the measurement of current obtained as a result of electrochemical oxidation/reduction.This current is proportional to the concentration of the analyte.Chemically modified electrodes(CMEs) have great significance as important analytical tools for the electrochemical determination of pharmaceuticals.The modification of electrode results in efficient determination of electro-active biomolecules at very lower potential without its major interferences.The operation mechanism of CMEs depends on the properties of the modifier materials that are used to promote selectivity towards the target analytes.Modified electrodes can be prepared by deposition of various compounds such as organic compounds ,conducting polymers,metal oxides,etc. on the various electrode surfaces.The thesis presents the development ,electrochemical characterization and analytical application studies of eight voltammetric sensors developed for six drugs viz.,Ambroxol,Sulfamethoxazole,PAM Chloride, Lamivudine,Metronidazole and Nimesulide.The modification techniques adopted as part of the present work include Multiwalled Carbon Nanotube(MWCNT) based modification.Electropolymerisation and Gold Nanoparticle (AuNP) based modifications.
Resumo:
Microbent optical fibers are potential candidates for evanescent wave sensing. We investigate the behavior of a permanently microbent fiber optic sensor when it is immersed in an absorbing medium. Two distinct detection schemes, namely, bright-field and dark-field detection configuration, are employed for the measurements. The optical power propagating through the sensor is found to vary in a logarithmic fashion with the concentration of the absorbing species in the surrounding medium. We observe that the sensitivity of the setup is dependent on the bending amplitude and length of the microbend region for the bright-field detection scheme, while it is relatively independent of both for the dark-field detection configuration. This feature can be exploited in compact sensor designs where reduction of the sensing region length is possible without sacrificing sensitivity.