34 resultados para Linear and nonlinear correlation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the spectral and nonlinear optical properties of ZnO-SiO2 nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed, and the strongest UV emission of a typical ZnO-SiO2 nanocomposite is over three times stronger than that of pure ZnO. The nonlinearity of the silica colloid is low, and its nonlinear response can be improved by making composites with ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absorption and nonlinear scattering. The nonlinear refractive index and the nonlinear absorption increase with increasing ZnO volume fraction and can be attributed to the enhancement of exciton oscillator strength. ZnO-SiO2 is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis report results obtained from a detailed analysis of the fluctuations of the rheological parameters viz. shear and normal stresses, simulated by means of the Stokesian Dynamics method, of a macroscopically homogeneous sheared suspension of neutrally buoyant non-Brownian suspension of identical spheres in the Couette gap between two parallel walls in the limit of vanishingly small Reynolds numbers using the tools of non-linear dynamics and chaos theory for a range of particle concentration and Couette gaps. The thesis used the tools of nonlinear dynamics and chaos theory viz. average mutual information, space-time separation plots, visual recurrence analysis, principal component analysis, false nearest-neighbor technique, correlation integrals, computation of Lyapunov exponents for a range of area fraction of particles and for different Couette gaps. The thesis observed that one stress component can be predicted using another stress component at the same area fraction. This implies a type of synchronization of one stress component with another stress component. This finding suggests us to further analysis of the synchronization of stress components with another stress component at the same or different area fraction of particles. The different model equations of stress components for different area fraction of particles hints at the possible existence a general formula for stress fluctuations with area fraction of particle as a parameter

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral and nonlinear optical characteristics of nano ZnO and its composites are investigated. The fluorescence behaviour of nano colloids of ZnO has been studied as a function of the excitation wavelength and there is a red shift in emission peak with excitation wavelength. Apart from the observation of the reported ultra violet and green emissions, our results reveal that additional blue emissions at 420 nm and 490 nm are developed with increasing particle size. Systematic studies on nano ZnO have indicated the presence of luminescence due to excitonic emissions when excited with 255 nm as well as significant contribution from surface defect states when excited with 325 nm. In the weak confinement regime, the third-order optical susceptibility χ(3) increases with increasing particle size (R) and annealing temperature (T) and a R2 and T2.5 dependence of χ(3) is obtained for nano ZnO. ZnO nanocolloids exhibit induced absorption whereas the self assembled films of ZnO exhibit saturable absorption due to saturation of linear absorption of ZnO defect states and electronic effects. ZnO nanocomposites exhibit negative nonlinear index of refraction which can be attributed to two photon absorption followed by weak free carrier absorption. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. The nonlinear response of ZnO nanocomposites is wavelength dependent and switching from induced absorption to saturable absorption has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an optical limiter. ZnO based nanocomposites are potential materials for enhanced and tunable light emission and for the development of nonlinear optical devices with a relatively small optical limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Letter we present the spectral and nonlinear optical properties of ZnO–Ag nanocomposites prepared by colloidal chemical synthesis. Obvious enhancement of ultraviolet (UV) emission of the samples is observed and the strongest UV emission is over three times than that of pure ZnO. These nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behaviour which increases with increasing Ag volume fraction. The observed nonlinear absorption is explained through two photon absorption followed by free carrier absorption. ZnO–Ag is a potential nanocomposite material for the UV light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In general, linear- optic, thermo- optic and nonlinear- optical studies on CdSe QDs based nano uids and their special applications in solar cells and random lasers have been studied in this thesis. Photo acous- tic and thermal lens studies are the two characterization methods used for thermo- optic studies whereas Z- scan method is used for nonlinear- optical charecterization. In all these cases we have selected CdSe QDs based nano uid as potential photonic material and studied the e ect of metal NPs on its properties. Linear optical studies on these materials have been done using vari- ous characterization methods and photo induced studies is one of them. Thermal lens studies on these materials give information about heat transport properties of these materials and their suitability for applica- tions such as coolant and insulators. Photo acoustic studies shows the e ect of light on the absorption energy levels of the materials. We have also observed that these materials can be used as optical limiters in the eld of nonlinear optics. Special applications of these materials have been studied in the eld of solar cell such as QDSSCs, where CdSe QDs act as the sensitizing materials for light harvesting. Random lasers have many applications in the eld of laser technology, in which CdSe QDs act as scattering media for the gain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This proposed thesis is entitled “Plasma Polymerised Organic Thin Films: A study on the Structural, Electrical, and Nonlinear Optical Properties for Possible Applications. Polymers and polymer based materials find enormous applications in the realm of electronics and optoelectronics. They are employed as both active and passive components in making various devices. Enormous research activities are going on in this area for the last three decades or so, and many useful contributions are made quite accidentally. Conducting polymers is such a discovery, and eversince the discovery of conducting polyacetylene, a new branch of science itself has emerged in the form of synthetic metals. Conducting polymers are useful materials for many applications like polymer displays, high density data storage, polymer FETs, polymer LEDs, photo voltaic devices and electrochemical cells. With the emergence of molecular electronics and its potential in finding useful applications, organic thin films are receiving an unusual attention by scientists and engineers alike. This is evident from the vast literature pertaining to this field appearing in various journals. Recently, computer aided design of organic molecules have added further impetus to the ongoing research activities in this area. Polymers, especially, conducting polymers can be prepared both in the bulk and in the thinfilm form. However, many applications necessitate that they are grown in the thin film form either as free standing or on appropriate substrates. As far as their bulk counterparts are concerned, they can be prepared by various polymerisation techniques such as chemical routes and electrochemical means. A survey of the literature reveals that polymers like polyaniline, polypyrrole, polythiophene, have been investigated with a view to studying their structural electrical and optical properties. Among the various alternate techniques employed for the preparation of polymer thin films, the method of plasma polymerisation needs special attention in this context. The technique of plasma polymerisation is an inexpensive method and often requires very less infra structure. This method includes the employment of ac, rf, dc, microwave and pulsed sources. They produce pinhole free homogeneous films on appropriate substrates under controlled conditions. In conventional plasma polymerisation set up, the monomer is fed into an evacuated chamber and an ac/rf/dc/ w/pulsed discharge is created which enables the monomer species to dissociate, leading to the formation of polymer thin films. However, it has been found that the structure and hence the properties exhibited by plasma polymerized thin films are quite different from that of their counterparts produced by other thin film preparation techniques such as electrochemical deposition or spin coating. The properties of these thin films can be tuned only if the interrelationship between the structure and other properties are understood from a fundamental point of view. So very often, a through evaluation of the various properties is a pre-requisite for tailoring the properties of the thin films for applications. It has been found that conjugation is a necessary condition for enhancing the conductivity of polymer thin films. RF technique of plasma polymerisation is an excellent tool to induce conjugation and this modifies the electrical properties too. Both oxidative and reductive doping can be employed to modify the electrical properties of the polymer thin films for various applications. This is where organic thin films based on polymers scored over inorganic thin films, where in large area devices can be fabricated with organic semiconductors which is difficult to achieve by inorganic materials. For such applications, a variety of polymers have been synthesized such as polyaniline, polythiophene, polypyrrole etc. There are newer polymers added to this family every now and then. There are many virgin areas where plasma polymers are yet to make a foray namely low-k dielectrics or as potential nonlinear optical materials such as optical limiters. There are also many materials which are not been prepared by the method of plasma polymerisation. Some of the materials which are not been dealt with are phenyl hydrazine and tea tree oil. The advantage of employing organic extracts like tea tree oil monomers as precursors for making plasma polymers is that there can be value addition to the already existing uses and possibility exists in converting them to electronic grade materials, especially semiconductors and optically active materials for photonic applications. One of the major motivations of this study is to synthesize plasma polymer thin films based on aniline, phenyl hydrazine, pyrrole, tea tree oil and eucalyptus oil by employing both rf and ac plasma polymerisation techniques. This will be carried out with the objective of growing thin films on various substrates such as glass, quartz and indium tin oxide (ITO) coated glass. There are various properties namely structural, electrical, dielectric permittivity, nonlinear optical properties which are to be evaluated to establish the relationship with the structure and the other properties. Special emphasis will be laid in evaluating the optical parameters like refractive index (n), extinction coefficient (k), the real and imaginary components of dielectric constant and the optical transition energies of the polymer thin films from the spectroscopic ellipsometric studies. Apart from evaluating these physical constants, it is also possible to predict whether a material exhibit nonlinear optical properties by ellipsometric investigations. So further studies using open aperture z-scan technique in order to evaluate the nonlinear optical properties of a few selected samples which are potential nonlinear optical materials is another objective of the present study. It will be another endeavour to offer an appropriate explanation for the nonlinear optical properties displayed by these films. Doping of plasma polymers is found to modify both the electrical conductivity and optical properties. Iodine is found to modify the properties of the polymer thin films. However insitu iodine doping is tricky and the film often looses its stability because of the escape of iodine. An appropriate insitu technique of doping will be developed to dope iodine in to the plasma polymerized thin films. Doping of polymer thin films with iodine results in improved and modified optical and electrical properties. However it requires tools like FTIR and UV-Vis-NIR spectroscopy to elucidate the structural and optical modifications imparted to the polymer films. This will be attempted here to establish the role of iodine in the modification of the properties exhibited by the films

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spectral and nonlinear optical properties of ZnO based nanocomposites prepared by colloidal chemical synthesis are investigated. Very strong UV emissions are observed from ZnO–Ag, ZnO– Cu and ZnO–SiO2 nanocomposites. The strongest visible emission of a typical ZnO–Cu nanocomposite is over ten times stronger than that of pure Cu due to transition from deep donor level to the copper induced level. The optical band gap of ZnO–CdS and ZnO–TiO2 nanocomposites is tunable and emission peaks changes almost in proportion to changes in band gap. Nonlinear optical response of these nanocomposites is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450–650 nm at resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent and switching from RSA to SA has been observed at resonant wavelengths. Such a change-over is related to the interplay of plasmon/exciton band bleach and optical limiting mechanisms. The observed nonlinear absorption is explained through two photon absorption followed by weak free carrier absoption, interband absorption and nonlinear scattering mechanisms. The nonlinearity of the silica colloid is low and its nonlinear response can be improved by making composites with ZnO and ZnO–TiO2. The increase of the third-order nonlinearity in the composites can be attributed to the enhancement of exciton oscillator strength. This study is important in identifying the spectral range and the composition over which the nonlinear material acts as an RSA based optical limiter. These nanocomposites can be used as optical limiters and are potential materials for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The annealing effect on the spectral and nonlinear optical NLO characteristics of ZnO thin films deposited on quartz substrates by sol-gel process is investigated. As the annealing temperature increases from 300–1050 °C, there is a decrease in the band gap, which indicates the changes of the interface of ZnO. ZnO is reported to show two emission bands, an ultraviolet UV emission band and another in the green region. The intensity of the UV peak remains the same while the intensity of the visible peak increases with increase in annealing temperature. The role of oxygen in ZnO thin films during the annealing process is important to the change in optical properties. The mechanism of the luminescence suggests that UV luminescence of ZnO thin films is related to the transition from conduction band edge to valence band, and green luminescence is caused by the transition from deep donor level to valence band due to oxygen vacancies. The NLO response of these samples is studied using nanosecond laser pulses at off-resonance wavelengths. The nonlinear absorption coefficient increases from 2.9 ×10−6 to 1.0 ×10−4 m/W when the annealing temperature is increased from 300 to 1050 °C, mainly due to the enhancement of interfacial state and exciton oscillator strength. The third order optical susceptibility x(3) increases with increase in annealing temperature (T) within the range of our investigations. In the weak confinement regime, T2.4 dependence of x(3) is obtained for ZnO thin films. The role of annealing temperature on the optical limiting response is also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present the spectral and nonlinear optical properties of ZnO–CdS nanocomposites prepared by colloidal chemical synthesis. The optical band gap (Eg) of the material is tunable between 2.62 and 3.84 eV. The emission peaks of ZnO–CdS nanocomposites change from 385 to 520 nm almost in proportion to changes in Eg. It is possible to obtain a desired luminescence color from UV to green by simply adjusting the composition. The nonlinear optical response of these samples is studied by using nanosecond laser pulses from a tunable laser at the excitonic resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent, and switching from saturable absorption (SA) to reverse SA (RSA) has been observed for samples as the excitation wavelength changes from the excitonic resonance to off-resonance wavelengths. Such a changeover in the sign of the nonlinearity of ZnO–CdS nanocomposites is related to the interplay of exciton bleach and optical limiting mechanisms. The ZnO–CdS nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior at off-resonant wavelengths. The nonlinear refractive index and the nonlinear absorption increase with increasing CdS volume fraction at 532 nm. The observed nonlinear absorption is attributed to two photon absorption followed by weak free carrier absorption. The enhancement of the third-order nonlinearity in the composites can be attributed to the concentration of exciton oscillator strength. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA based optical limiter. ZnO–CdS is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we present the spectral and nonlinear optical properties of ZnOCu nanocomposites prepared by colloidal chemical synthesis. The emission consisted of two peaks. The 385-nm ultraviolet (UV) peak is attributed to ZnO and the 550-nm visible peak is attributed to Cu nanocolloids. Obvious enhancement of UV and visible emission of the samples is observed and the strongest UV emission of a typical ZnOCu nanocomposite is over three times stronger than that of pure ZnO. Cu acts as a sensitizer and the enhancement of UV emission are caused by excitons formed at the interface between Cu and ZnO. As the volume fraction of Cu increases beyond a particular value, the intensity of the UV peak decreases while the intensity of the visible peak increases, and the strongest visible emission of a typical ZnOCu nanocomposite is over ten times stronger than that of pure Cu. The emission mechanism is discussed. Nonlinear optical response of these samples is studied using nanosecond laser pulses from a tunable laser in the wavelength range of 450650 nm, which includes the surface plasmon absorption (SPA) band. The nonlinear response is wavelength dependent and switching from reverse saturable absorption (RSA) to saturable absorption (SA) has been observed for Cu nanocolloids as the excitation wavelength changes from the low absorption window region to higher absorption regime near the SPA band. However, ZnO colloids and ZnOCu nanocomposites exhibit induced absorption at this wavelength. Such a changeover in the sign of the nonlinearity of ZnOCu nanocomposites, with respect to Cu nanocolloids, is related to the interplay of plasmon band bleach and optical limiting mechanisms. The SA again changes back to RSA when we move over to the infrared region. The ZnOCu nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior. The nonlinear refractive index and the nonlinear absorption increases with increasing Cu volume fraction at 532 nm. The observed nonlinear absorption is explained through two-photon absorption followed by weak free-carrier absorption and interband absorption mechanisms. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA-based optical limiter. ZnOCu is a potential nanocomposite material for the light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work deals with investigations on some technologically important polymer nanocomposite films and semi crystalline polypyrrole films.The work presented in the thesis deals with the realization of novel polymer nanocomposites with enhanced functionalities and prospects of applications in the fields related to nanophotonics. The development of inorganic/polymer nanocomposites is a rapidly expanding multidisciplinary research area with profound industrial applications. The incorporation of suitable inorganic nanoparticles can endow the resulting nanocomposites with excellent electrical, optical and mechanical properties. The first chapter gives a general introduction to nanotechnology, nanocomposites and conducting polymers. It also emphasizes the significance of ZnO among other semiconductor materials, which forms the inorganic filler in the polymer nanocomposites of the present study. This chapter also gives general ideas on the properties and applications of conducting polymers with special reference to polypyrrole. The objectives of the present investigations are also clearly addressed in this chapter. The second chapter deals with the theoretical aspects and details of all the experimental techniques used in the present work for the synthesis of polymer nanocomposites and polypyrrole samples and their various characterizations. Chapter 3 is based on the preparation and properties of ZnO/Polystyrene nanocomposite film samples. The optical properties of these nanocomoposite films are discussed in detail.Chapter 4 deals with the detailed investigations on the dependence of the optical properties of ZnO/PS nanocomposite films on the size of the nanostructured ZnO filler material. The excellent UV shielding properties of these nanocomposite films form the highlight of this chapter. Chapter 5 gives a detailed analysis of the nonlinear optical properties of ZnO/PS nanocomposite films using Z scan technique. The effect of ZnO particle size in the composite films on the nonlinear properties is discussed. The present study involves two phases of research activities. In the first phase, the linear and nonlinear optical properties of ZnO/polymer nanocomposites are investigated in detail. The second phase of work is centered on the synthesis and related studies on highly crystalline polypyrrole films. In the present study, nanosized ZnO is synthesized using wet chemical method at two different temperatures

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanophotonics can be regarded as a fusion of nanotechnology and photonics and it is an emerging field providing researchers opportunities in fundamental science and new technologies. In recent times many new methodsand techniques have been developed to prepare materials at nanoscale dimensions. Most of these materials exhibit unique and interesting optical properties and behavior. Many of these have been found to be very useful to develop new devices and systems such as tracers in biological systems, optical limiters, light emitters and energy harvesters. This thesis presents a summary of the work done by the author in the field by choosing a few semiconductor systems to prepare nanomaterials and nanocomposites. Results of the study of linear and nonlinear optical properties of materials thus synthesized are also presented in the various chapters of this thesis. CdS is the material chosen here and the methods and the studies of the detailed investigation are presented in this thesis related to the optical properties of CdS nanoparticles and its composites. Preparation and characterization methods and experimental techniques adopted for the investigations were illustrated in chapter 2 of this thesis. Chapter 3 discusses the preparation of CdS, TiO2 and Au nanoparticles. We observed that the fluorescence behaviour of the CdS nanoparticles, prepared by precipitation technique, depends on excitation wavelength. It was found that the peak emission wavelength can be shifted by as much as 147nm by varyingthe excitation wavelengths and the reason for this phenomenon is the selective excitation of the surface states in the nanoparticles. This provided certain amount of tunability for the emission which results from surface states.TiO2 nanoparticle colloids were prepared by hydrothermal method. The optical absorption study showed a blue shift of absorption edge, indicating quantum confinement effect. The large spectral range investigated allows observing simultaneously direct and indirect band gap optical recombination. The emission studies carried out show four peaks, which are found to be generated from excitonic as well as surface state transitions. It was found that the emission wavelengths of these colloidal nanoparticles and annealed nanoparticles showed two category of surface state emission in addition to the excitonic emission. Au nanoparticles prepared by Turkevich method showed nanoparticles of size below 5nm using plasmonic absorption calculation. It was also found that there was almost no variation in size as the concentration of precursor was changed from 0.2mM to 0.4mM.We have observed SHG from CdS nanostructured thin film prepared onglass substrate by chemical bath deposition technique. The results point out that studied sample has in-plane isotropy. The relative values of tensor components of the second-order susceptibility were determined to be 1, zzz 0.14, xxz and 0.07. zxx These values suggest that the nanocrystals are oriented along the normal direction. However, the origin of such orientation remains unknown at present. Thus CdS is a promising nonlinear optical material for photonic applications, particularly for integrated photonic devices. CdS Au nanocomposite particles were prepared by mixing CdS nanoparticles with Au colloidal nanoparticles. Optical absorption study of these nanoparticles in PVA solution suggests that absorption tail was red shifted compared to CdS nanoparticles. TEM and EDS analysis suggested that the amount of Au nanoparticles present on CdS nanoparticles is very small. Fluorescence emission is unaffected indicating the presence of low level of Au nanoparticles. CdS:Au PVA and CdS PVA nanocomposite films were fabricated and optically characterized. The results showed a red-shift for CdS:Au PVA film for absorption tail compared to CdS PVA film. Nonlinear optical analysis showed a huge nonlinear optical absorption for CdS:Au PVA nanocomposite and CdS:PVA films. Also an enhancement in nonlinear optical absorption is found for CdS:Au PVA thin film compared to the CdS PVA thin film. This enhancement is due to the combined effect of plasmonic as well as excitonic contribution at high input intensity. Samples of CdS doped with TiO2 were also prepared and the linear optical absorption spectra of these nanocompositeparticles clearly indicated the influence of TiO2 nanoparticles. TEM and EDS studies have confirmed the presence of TiO2 on CdS nanoparticles. Fluorescence studies showed that there is an increase in emission peak around 532nm for CdS nanoparticles. Nonlinear optical analysis of CdS:TiO2 PVA nanocomposite films indicated a large nonlinear optical absorption compared to that of CdS:PVA nanocomposite film. The values of nonlinear optical absorption suggests that these nanocomposite particles can be employed for optical limiting applications. CdSe-CdS and CdSe-ZnS core-shell QDs with varying shell size were characterized using UV–VIS spectroscopy. Optical absorption and TEM analysis of these QDs suggested a particle size around 5 nm. It is clearly shown that the surface coating influences the optical properties of QDs in terms of their size. Fluorescence studies reveal the presence of trap states in CdSe-CdS and CdSe- ZnS QDs. Trap states showed an increase as a shell for CdS is introduced and increasing the shell size of CdS beyond a certain value leads to a decrease in the trap state emission. There is no sizeable nonlinear optical absorption observed. In the case of CdSe- ZnS QDs, the trap state emission gets enhanced with the increase in ZnS shell thickness. The enhancement of emission from trap states transition due to the increase in thickness of ZnS shell gives a clear indication of distortion occurring in the spherical symmetry of CdSe quantum dots. Consequently the nonlinear optical absorption of CdSe-ZnS QDs gets increased and the optical limiting threshold is decreased as the shell thickness is increased in respect of CdSe QDs. In comparison with CdSe-CdS QDs, CdSe-ZnS QDs possess much better optical properties and thereby CdSe-ZnS is a strong candidate for nonlinear as well as linear optical applications.