77 resultados para Biology, Molecular|Chemistry, Biochemistry
Resumo:
The constitutive production of AMPs in shrimps ensures that animals are able to protect themselves from low-level assaults by pathogens present in the environment. As these molecules play important roles in the shrimp immune defense system, the expression level of these AMPs are possible indicators of the immune state of shrimps. The present study also indicates the antiviral property of AMPs, especially ALF, stressing the importance of their up-regulation through the application of immunostimulants/probiotics as a prophylactic strategy in aquaculture. The present study shows that shrimp defense system is equipped enough to evade WSSV infection to a certain extent, when the animals were maintained on marine yeast and probiotic diet, whereas the control diet fed group succumbed to WSSV infection. This study reveals that marine yeast and probiotic supplemented diet can delay the process of WSSV infection and confer greater protection to the animals. Particularly, the protection conferred by marine yeast, C. haemulonii S27 and Bacillus MCCB101 were highly promising imparting greater hope to the aquaculture community to overcome the prevailing disease problems in aquaculture. It may be inferred from the present study that up-regulation of AMP genes could be effected by the application of immunostimulants and probiotics. Also, AMP expression profile could be used as an effective tool for screening immunostimulants and probiotics for application in shrimp culture. Ultimately, it is likely that no single compound or strategy will provide a solution to the problem of disease within aquaculture and that, in reality, a suite of techniques will be required including the manipulation of the rearing environment, addition of probionts as a matter of routine during culture, and the use of immunostimulants and other supplements during vulnerable growth phases. Finally, the development of good management practices, the control of environmental variables, genetic improvement in the penaeid species, understanding of host-virus interaction, modulation of the shrimp immune system, supported by functional genomics and proteomics of this crustacean, as a whole suggests that the control of WSSV is not far.
Resumo:
the present study was undertaken with the following objectives: 1. Isolation and identification of yeasts from Arabian Sea and Bay of Bengal. 2. Molecular characterization of yeast isolates and phylogenetic analysis 3. Physiological and biochemical characterization of the isolates. 4. Proximate composition of yeast biomass and bioactive compounds. The Thesis is comprised of six chapters. A general introduction to the topic is given in Chapter1. Isolation and identification of marine yeasts are presented in Chapter 2. Chapter 3 deals with molecular identification and physiological characterization of Non- pigmented yeasts. Molecular identification and physiological characterization of pigmented yeast is presented in Chapter 4. Proximate composition of yeast biomass of various genera and their bioactive compounds are illustrated in Chapter 5. A summary of the results of the present study is given in Chapter 6. References and Appendices are followed
Resumo:
Division of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science and Technology
Resumo:
The present investigations have considerably enhanced the existing knowledge on the biology and distribution/availability pattern of D.incarnatus in the Malippuram region. The species occurs in good concentration during October - March/April, and disappears from the area during late premonsoon and monsoon months. Recolonising the area in September, it grows fast in the subsequent months. The life span of the species is estimated to be about an year. Studies on the reproductive biology of the species have revealed that there are two spawning peaks, the major peak in February - March and minor peak, in December. The salinity regime of the area influences the reproductive activity. These observations form the original contribution in the thesis. The information on variation in water content, protein,glycogen and lipid levels in relation to reproductive cycle has helped to a better understanding of the gametogenic activity and spawning of the species. Similarly, the findings on salinity tolerance and filtration rate have shown that small sized clams exhibit greater tolerance range than larger clams, and grow at a faster rate with active metabolism. It is hoped that these information would considerably add to the present knowledge of the basic facts which are relevant to the improvement and management of the clam fishery of this region.
Resumo:
The main source of protein for human and animal consumption is from the agricultural sector, where the production is vulnerable to diseases, fluctuations in climatic conditions and deteriorating hydrological conditions due to water pollution. Therefore Single Cell Protein (SCP) production has evolved as an excellent alternative. Among all sources of microbial protein, yeast has attained global acceptability and has been preferred for SCP production. The screening and evaluation of nutritional and other culture variables of microorganisms are very important in the development of a bioprocess for SCP production. The application of statistical experimental design in bioprocess development can result in improved product yields, reduced process variability, closer confirmation of the output response to target requirements and reduced development time and overall cost.The present work was undertaken to develop a bioprocess technology for the mass production of a marine yeast, Candida sp.S27. Yeasts isolated from the offshore waters of the South west coast of India and maintained in the Microbiology Laboratory were subjected to various tests for the selection of a potent strain for biomass production. The selected marine yeast was identified based on ITS sequencing. Biochemical/nutritional characterization of Candida sp.S27 was carried out. Using Response Surface Methodology (RSM) the process parameters (pH, temperature and salinity) were optimized. For mass production of yeast biomass, a chemically defined medium (Barnett and Ingram, 1955) and a crude medium (Molasses-Yeast extract) were optimized using RSM. Scale up of biomass production was done in a Bench top Fermenter using these two optimized media. Comparative efficacy of the defined and crude media were estimated besides nutritional evaluation of the biomass developed using these two optimized media.
Resumo:
Dept.of Marine Biology,Microbiology and Biochemistry,Cochin University of Science and Technology
Resumo:
White spot syndrome virus (WSSV) is the deadliest virus among crustaceans ever discovered having several unique and novel features. Recent developments in genomics and proteomics could elucidate the molecular process involved in the WSSV infection and the host pathogen interaction to some extent. Until now no fool proof treatment or prophylactic measure has been made available to control WSSV out breaks in culture system. Even though there are technologies like application of immunostimulants, vaccines, RNAi and several antiviral natural products none of them has been taken to the level of clinical trials. However, there are several management options such as application of bioremediation technologies to maintain the required environmental quality, maintenance of zero water exchange systems coupled with application of probiotics and vaccines which on adoption shall pave way for successful crops amidst the rapid spread of the virus. In this context the present work was undertaken to develop a drug from mangrove plants for protecting shrimp from WSSV.Mangroves belong to those ecosystems that are presently under the threat of destruction, diversion and blatant attack in the name of so called ‘developmental activities’. Mangrove plants have unique ecological features as it serves as an ecotone between marine and terrestrial ecosystem and hence possess diversity of metabolites with diverse activities. This prompted them being used as remedial measures for several ailments for ages. Among the mangrove plants Ceriops tagal, belonging to the family Rhizophororaceae was in attention for many years for isolating new metabolites such as triterpenes, phenolic compounds, etc. Even though there were attempts to study various plant extracts to develop anti-viral preparations their activity against WSSV was not investigated as yet.
Resumo:
Crustaceans comprising numerous edible species of prawns, lobsters and crabs inhabiting different ecosystem form significant portion of the aquatic food resources of the world. Among the crustaceans, prawns are the most commercially exploited group and hold premier rank by virtue of their importance as an esteemed food of gourmet and on account of their high export value. Met-ape-naeus manoceras (Fabricius, 1798) which is known IS,Speckled shrimp’ (FAD name) and ‘Brown shrimp’ ( common nameused in the industry) is one of the commercially important marine penaeid prawns of India. During 1995, M. monaceros catch constituted 7.5 Z of the all India marine penaeid prawn landings. M. monoceros attains a maximum length of about 200 mm and has high export potential.Thus realising the growing importance of M. monoceros in the capture fisheries, it was felt, that it would be ideal to carry out detailed study on this species for rational exploitation and management of its fishery. Hence, the present work entitled, “Biology, population characteristics and fishery of the speckled shrimp Hetapenaeus monoceros (Fabricius, 1798) along Kerala coast“ was undertaken by the author. The thesis is laid out in seven chapters comprising TAXONOMY, FOOD AND FEEDING HABITS, AGE AND GROWTH, REPRODUCTION,LENGTH-WEIGHT RELATIONSHIP, FISHERY and POPULATION DYNAMICS
Resumo:
The present work aims to study induced maturation of the pearl oyster for induced spawning experiments. The work on larval development was done with a view to developing techniques for the artificial rearing of commercially important pearl oyster P fucata, and also to elucidate the principles and problems of tropical bivalve larvae in general for detailed investigations in the future. The present study is designed to probe into the details of the basic aspects of the biology related to the hatchery technology of Pinctada fucata and the understanding of the factors which influence induction of maturation, spawning, larval rearing and spat settlement. This would go a long way in the upgradation of hatchery technology of the Indian Pearl oyster Pinctada fucata fora commercial level seed production..
Resumo:
About 80 years ago, the neurosecretory eyestalk structures and their role in endocrine regulation was recognized in crustaceans. After the recognition it took half a century to identify the first peptide hormone. Till date a large number of homologous peptides of crustacean hyperglycaemic hormone and moult-inhibiting hormone have been identified, consequently they are called the CHH family hormones. This family comprises of highly multifunctional peptides which according to sequences and precursor structures can be divided into two subfamilies, type-I (CHH/ITP) and II (MIH, MOIH, VIH/GIH) (Webster et al., 2012). The XO-SG complex has been the major site of the two subfamilies. The advent of molecular techniques resulted in the characterization of different precursors of CHH, MIH and GIH; these hormones consist of a signal peptide, but only the preprohormone of CHHs contain a precursor- related peptide (CPRP) located between the signal and the mature hormone (Weidemann et al., 1989; Klein et al., 1993b; De Kleijn and Van Herp, 1995). The essentialities of the gene structure comply with the functions of the CHH family hormones. The CHH family hormone functions are inhibitory as well as stimulatory in the process of reproduction and maturation
Resumo:
Activities of SOMB got off to an impactful start with ‘Shramdhan’ programme on world Environment Day. SOMB members actively participated in a campus cleaning drive at Lakeside Campus. Members also organised a tree planting programme on this day and planted few fruit trees at the marine sciences campus. We also had couple of high profile faculty members delivering lectures to SOMB community. This included Dr. Pattanathu Rahman, Sr. Lecturer and Programme Leader of Chemical and Bioprocess Engineering Group at Teeside University, UK; Dr. Dr.Velerie Vasilakov, Vladivostok State University, Russia; Dr. Sunil Kumar George, Research Scientist, Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA and Prof. Kalliathe Padmanabhan, Department of Biochemistry, Michigan State University, USA.
Resumo:
This work envisages the fermentation of prawn shell waste into a more nutritious product with simpler components for application as a feed ingredient in aquaculture. This product would be a rich source of protein along with chitin, minerals, vitamins and N-acetyl glucosamine. A brief description of the various processing (chemical and bioprocess) methods employed for chitin, chitosan and single sell protein preparations from shell waste. It deals with the isolation of micro flora associated with prawn shell degradation. It describes the methods adopted for fermentation of prawn shell degradation and fermentation of prawn shell waste with the selected highly chitinoclastic strains. The comparison of SSF and SmF for each selected strain in terms of enrichment of protein, lipid and carbohydrate in the fermented product was done. Detailed analysis of product quality is discussed. The feed for mulation and feeding experiment explained in detail. Statistical analysis of various biogrowth parameters was done with Duncan’s multiple range test. Very briefly explains 28 days of feeding experiment. A method for the complete utilization of shell waste explains with the help of experiments.
Resumo:
The present investigation is dedicated to understanding various mechanisms of salinity tolerance in the estuarine clam V. cyprinoides var. cochinensis. Even though V. cyprinoids var. cochinensis and V. cyprinoides are found to coexist in the same area, V. cyprinoids is reported to tolerate higher salinities than variety cochinenesis. Variations in the salinity of sea water may affect the aquatic organisms through specific gravity control and variations in osmotic pressure. The specific gravity of most soft tissues is close to that of normal seawater. Many bottom living forms, both attached and motile, have very high specific gravities eg.villorita cyprinoids. Villorita spp. Occurs abundantly in the reaches of the estuary and backwaters of Kerala. In both marine and estuarine forms, it is observed that mantle employs a lesser quantity of amino acids compared to adductor and foot. The regulation of cell volume is not carried out equally in all types of tissues. The capability of salinity tolerance is an aggregate of both the capabilities of extra cellular anisosmotic and intracellular isosmotic regulations in osmoconforming animals. The ultimate aim of water regulation is to regulate the cell volume.T here are slight changes occur in cell volume even in osmoregulators. These studies can also help in revealing the changes brought about in the cellular organelles like lysosomes, which were found to have a role in the osmoregulatory process. The osmoregulatory machinery of estuarine animals is more streamlined for a successful life in the estuarine regime.
Resumo:
The main objectives of the present investigation were to evaluate the qualitative and quantitative distribution of natural cyanobacterial population and their ecobiological properties along the Cochin estuary and their application in aquaculture systems as a nutritional supplement due to their nutrient-rich biochemical composition and antioxidant potential. This thesis presents a detailed account of the distribution of cyanobacteria in Cochin estuary, an assessment of physico-chemical parameters and the nutrients of the study site, an evaluation of the effect of physico-chemical parameters on cyanobacterial distribution and abundance, isolation, identification and culturing of cyanobacteria, the biochemical composition an productivity of cyanobacteria, and an evaluation of the potential of the selected cyanobacteria as antioxidants against ethanol induced lipid peroxidation. The pH, salinity and nutritional requirements were optimized for low-cost production of the selected cyanobacterial strains. The present study provides an insight into the distribution, abundance, diversity and ecology of cyanobacteria of Cochin estuary. From the results, it is evident that the ecological conditions of Cochin estuary support a rich cyanobacterial growth.
Resumo:
In this project, an attempt has been made to study the stability of erythrocyte and lysosomal membranes biochemically. Erythrocytes were chosen for the study because of their ready availability and relative simplicity. Biological membranes forming closed boundaries between compartments of varying composition consist mainly of proteins and lipids. They are asymmetric, fluid structures that are thermodynamically stable and metabolically active. Normal cellular function begins with normal membrane structure and any variation in it may upset the normal functions. The degree of fluidity of a membrane depends on the chain length of its lipids and degree of unsaturation of constituent fatty acids. In response to environmental changes, many cells can regulate composition of their membranes to maintain the overall semi fluid environment necessary for many membrane associated functions. The assembly and Maintenance of membrane structures in cells is a dynamic process. The components are not only synthesized and inserted into a growing membrane but are also continuously degraded at a slower rate. This turnover process varies with each individual molecule.Lysosomes are important in the catabolic processes occurring in the cell. Lysosomes contain hydrolytic enzymes and are stable under normal conditions. In certain pathological conditions, the lysosomal membrane may rupture, releasing the hydrolytic enzymes into the cell and digestion of cell takes place as a whole. This is very dangerous. In normal life processes of multi cellular organisms, lysosomes rupture following the death of a cell and it may have some value as a built in mechanism for selfremoval of dead cells.An attempt has also been made in this project towards developing lysosome membrane stability as an index of fish spoilage during storage. Different membranes within the cell and between cells have different compositions as reflected in the ratio of protein to lipid. The difference is not surprising given the very different functions of membranes