18 resultados para Asian monsoon precipitation
Resumo:
The Tropospheric Biennial Oscillation (TBO), a major interannual variation phenomenon in the Indo-Pacific region, is the result of strong ocean-atmosphere coupling over the Asian-Australian monsoon area. Along with other meteorological and oceanographic parameters, the tropical circulation also exhibits interannual oscillations. Even though the TBO is the result of strong air–sea interaction, the circulation cells during TBO years are, as yet, not well understood. In the present study, an attempt has been made to understand the interannual variability of the mean meridional circulation and local monsoon circulation over south Asia in connection with the TBO. The stream function computed from the zonal mean meridional wind component of NCEP=NCAR reanalysis data for the years 1950–2003 is used to represent the meanmeridional circulation. Mean meridional mass transport in the topics reverses from a weak monsoon to a strong monsoon in the presence of ENSO, but in normal TBO yearsmean transport remains weak across the Northern Hemisphere. The meridional temperature gradient, which drives the mean meridional circulation, also shows no reversal during the normal TBO cycle. The local Hadley circulation over the monsoon area follows the TBO cycle with anomalous ascent (descent) in strong (weak) monsoon years. During normal TBO years, the Equatorial region and Indian monsoon areas exhibit opposite local Hadley circulation anomalies
Resumo:
The SST convection relation over tropical ocean and its impact on the South Asian monsoon is the first part of this thesis. Understanding the complicated relation between SST and convection is important for better prediction of the variability of the Indian monsoon in subseasonal, seasonal, interannual, and longer time scales. Improved global data sets from satellite scatterometer observations of SST, precipitation and refined reanalysis of global wind fields have made it possible to do a comprehensive study of the SST convection relation. Interaction of the monsoon and Indian ocean has been discussed. A coupled feedback process between SST and the Active-Break cycle of the Asian summer monsoon is a central theme of the thesis. The relation between SST and convection is very important in the field of numerical modeling of tropical rainfall. It is well known that models generally do very well simulating rainfall in areas of tropical convergence zones but are found unable to do satisfactory simulation in the monsoon areas. Thus in this study we critically examined the different mechanisms of generation of deep convection over these two distinct regions.The study reported in chapter 3 has shown that SST - convection relation over the warm pool regions of Indian and west Pacific oceans (monsoon areas) is in such a way that convection increases with SST in the SST range 26-29 C and for SST higher than 29-30 C convection decreases with increase of SST (it is called Waliser type). It is found that convection is induced in areas with SST gradients in the warm pool areas of Indian and west Pacific oceans. Once deep convection is initiated in the south of the warmest region of warm pool, the deep tropospheric heating by the latent heat released in the convective clouds produces strong low level wind fields (Low level Jet - LLJ) on the equatorward side of the warm pool and both the convection and wind are found to grow through a positive feedback process. Thus SST through its gradient acts only as an initiator of convection. The central region of the warm pool has very small SST gradients and large values of convection are associated with the cyclonic vorticity of the LLJ in the atmospheric boundary layer. The conditionally unstable atmosphere in the tropics is favorable for the production of deep convective clouds.
Resumo:
This study focuses on the onset of southwest monsoon over Kerala. India Meteorological Department (IMD) has been using a semi-objective method to define monsoon onset. The main objectives of the study are to understand the monsoon onset processes, to simulate monsoon onset in a GCM using as input the atmospheric conditions and Sea Surface Temperature, 10 days earlier to the onset, to develop a method for medium range prediction of the date of onset of southwest monsoon over Kerala and to examine the possibility of objectively defining the date of Monsoon Onset over Kerala (MOK). It gives a broad description of regional monsoon systems and monsoon onsets over Asia and Australia. Asian monsoon includes two separate subsystems, Indain monsoon and East Asian monsoon. It is seen from this study that the duration of the different phases of the onset process are dependent on the period of ISO. Based on the study of the monsoon onset process, modeling studies can be done for better understanding of the ocean-atmosphere interaction especially those associated with the warm pool in the Bay of Bengal and the Arabian Sea.
Resumo:
The main objective of the of present study are to study the intraseasonal variability of LLJ and its relation with convective heating of the atmosphere, to establish whether LLJ splits into two branches over the Arabian sea as widely believed, the role of horizonatal wind shear of LLJ in the episodes of intense rainfall events observed over the west coast of India, to perform atmospheric modeling work to test whether small (meso) scale vortices form during intense rainfall events along the west coast; and to study the relation between LLJ and monsoon depression genesis. The results of a study on the evolution of Low Level Jetstream (LLJ) prior to the formation of monsoon depressions are presented. A synoptic model of the temporal evolution of monsoon depression has been produced. There is a systematic temporal evolution of the field of deep convection strength and position of the LLJ axis leading to the genesis of monsoon depression. One of the significant outcomes of the present thesis is that the LLJ plays an important role in the intraseasonal and the interannual variability of Indian monsoon activity. Convection and rainfall are dependent mainly on the cyclonic vorticity in the boundary layer associated with LLJ. Monsoon depression genesis and the episodes of very heavy rainfall along the west coast of India are closely related to the cyclonic shear of the LLJ in the boundary layer and the associated deep convection. Case studies by a mesoscale numerical model (MM5) have shown that the heavy rainfall episodes along the west coast of India are associated with generation of mesoscale cyclonic vortices in the boundary layer.
Resumo:
The present work is an attempt to understand the characteristics of the upper troposphere and lower stratosphere over the Asian summer monsoon region, more specifically over the Indian subcontinent. Mainly three important parameters are taken such as zonal wind, temperature and ozone over the UT/LS of the Asian summer monsoon region. It made a detailed study of its interannual variability and characteristics of theses parameters during the Indian summer monsoon period. Monthly values of zonal wind and temperature from the NCEP/NCAR reanalysis for the period 1960-2002 are used for the present study. Also the daily overpass total ozone data for the 12 Indian stations (from low latitude to high latitudes) from the TOMS Nimbus 7 satellite for the period 1979 to 1992 were also used to understand the total ozone variation over the Indian region. The study reveals that if QBO phases in the stratosphere is easterly or weak westerly then the respective monsoon is found to be DRY or below Normal . On the other hand, if the phase is westerly or weak easterly the respective Indian summer monsoon is noted as a WET year. This connection of stratospheric QBO phases and Indian summer monsoon gives more insight in to the long-term predictions of Indian summer monsoon rainfall. Wavelet analysis and EOF methods are the two advanced statistical techniques used in the present study to explore more information of the zonal wind that from the smaller scale to higher scale variability over the Asian summer monsoon region. The interannual variability of temperature for different stratospheric and tropospheric levels over the Asian summer monsoon region have been studied. An attempt has been made to understand the total ozone characteristics and its interannual variablilty over 12 Indian stations spread from south latitudes to north latitudes. Finally it found that the upper troposphere and lower stratosphere contribute significantly to monsoon variability and climate changes. It is also observed that there exists a link between the stratospheric QBO and Indian summer monsoon
Resumo:
The present study illustrates the biennial oscillation in different ocean-atmosphere parameters associated with interannual variability of Indian summer monsoon rainfall.It also accounts the role of different processes like ENSO, IOD, QBO and ISO in the monsoon variability during the TBO years.
Resumo:
Regional climate models are becoming increasingly popular to provide high resolution climate change information for impacts assessments to inform adaptation options. Many countries and provinces requiring these assessments are as small as 200,000 km2 in size, significantly smaller than an ideal domain needed for successful applications of one-way nested regional climate models. Therefore assessments on sub-regional scales (e.g., river basins) are generally carried out using climate change simulations performed for relatively larger regions. Here we show that the seasonal mean hydrological cycle and the day-to-day precipitation variations of a sub-region within the model domain are sensitive to the domain size, even though the large scale circulation features over the region are largely insensitive. On seasonal timescales, the relatively smaller domains intensify the hydrological cycle by increasing the net transport of moisture into the study region and thereby enhancing the precipitation and local recycling of moisture. On daily timescales, the simulations run over smaller domains produce higher number of moderate precipitation days in the sub-region relative to the corresponding larger domain simulations. An assessment of daily variations of water vapor and the vertical velocity within the sub-region indicates that the smaller domains may favor more frequent moderate uplifting and subsequent precipitation in the region. The results remained largely insensitive to the horizontal resolution of the model, indicating the robustness of the domain size influence on the regional model solutions. These domain size dependent precipitation characteristics have the potential to add one more level of uncertainty to the downscaled projections.
Resumo:
This study focuses on the south –west monsoon rainfall over Kerala and its variability both on the spatial and temporal scales. The main objectives of the study are, interanual, long-term and decadal variabilities in MRF(monsoon rain fall),relationship between antecedent global circulation parameters, diurnal variability using data of a large number of stations in Kerala and the spatial distribution of rainfall under two large scale synoptic. Kerala gets nearly 190cm of rainfall during the south-west monsoon season 1st June to 30th September. This is more than twice the monsoon rainfall of India. A good part of kerala’s rainfall is caused by the orography of the Western Ghats Mountain ranges. The state receives 286cm of annual rainfall of which 68%is during the south-west monsoon season. The summer monsoon rainfall of Kerala shows a decreasing trend of 12.0%in 96 years. The study shows that the Intra Seasonal Oscillations(ISO) of the monsoon season has large interanual variability,some years having long period and other years having short period ISO. It is seen that Western Ghats has a strong control on the east west profile on the monsoon rainfall.
Resumo:
The objective of the study is to examine the dynamic and thermodynamic structure and the variations that occur in the surface layer during the pre-monsoon, onset and post-monsoon periods over the Indian region. The variations caused during the occurrence of micro and mesoscale systems, structure and variation in the marine boundary layer over the Indian region is also investigated. The drag coefficient computed indirectly also shows variation during various seasons. The thermodynamic structure of the atmosphere shows variation during the various seasons. The onset monsoon causes lowering of the Lifting Condensation Levels. The outcome of the study is expected to provide a better understanding of the structure and variations in the boundary layer over India, which is useful for many applications especially for numerical modeling studies.
Resumo:
This study deals with the salient features of the north Indian ocean associated with the summer monsoon. The focus is given on the Arabian sea mini warm pool, which is a part of the Indian ocean. It primarily study the certain aspects of the atmosphere and ocean variability in the north Indian ocean. The attempt were made to understand various aspects of time –scale variability of major features occurring in the Indian summer monsoon. The result from the thesis can be utilized as an input for model studies for prediction of monsoon, understanding ocean dynamics, radar tracking and ranging etc.
Resumo:
Atmospheric Boundary layer (ABL) is the layer just above the earth surface and is influenced by the surface forcing within a short period of an hour or less. In this thesis, characteristics of the boundary layer over ocean, coastal and inland areas of the atmosphere, especially over the monsoon regime are thoroughly studied. The study of the coastal zone is important due to its high vulnerability mainly due to sea breeze circulation and associated changes in the atmospheric boundary layer. The major scientific problems addressed in this thesis are diurnal and seasonal variation of coastal meteorological properties, the characteristic difference in the ABL during active and weak monsoons, features of ABL over marine environment and the variation of the boundary layer structure over an inland station. The thesis describes the various features in the ABL associated with the active and weak monsoons and, the surface boundary layer properties associated with the active and weak epochs. The study provides knowledge on MABL and can be used as the estimated values of boundary layer parameters over the marine atmosphere and to know the values and variabilities of the ABL parameters such as surface wind, surface friction, drag coefficient, wind stress and wind stress curl.
Resumo:
This study deals with the salient features of the north Indian ocean associated with the summer monsoon. The focus is given on the Arabian sea mini warm pool, which is a part of the Indian ocean. It primarily study the certain aspects of the atmosphere and ocean variability in the north Indian ocean. The attempt were made to understand various aspects of time –scale variability of major features occurring in the Indian summer monsoon. The result from the thesis can be utilized as an input for model studies for prediction of monsoon, understanding ocean dynamics, radar tracking and ranging etc.
Resumo:
Mann–Kendall non-parametric test was employed for observational trend detection of monthly, seasonal and annual precipitation of five meteorological subdivisions of Central Northeast India (CNE India) for different 30-year normal periods (NP) viz. 1889–1918 (NP1), 1919–1948 (NP2), 1949–1978 (NP3) and 1979–2008 (NP4). The trends of maximum and minimum temperatures were also investigated. The slopes of the trend lines were determined using the method of least square linear fitting. An application of Morelet wavelet analysis was done with monthly rainfall during June– September, total rainfall during monsoon season and annual rainfall to know the periodicity and to test the significance of periodicity using the power spectrum method. The inferences figure out from the analyses will be helpful to the policy managers, planners and agricultural scientists to work out irrigation and water management options under various possible climatic eventualities for the region. The long-term (1889–2008) mean annual rainfall of CNE India is 1,195.1 mm with a standard deviation of 134.1 mm and coefficient of variation of 11%. There is a significant decreasing trend of 4.6 mm/year for Jharkhand and 3.2 mm/day for CNE India. Since rice crop is the important kharif crop (May– October) in this region, the decreasing trend of rainfall during themonth of July may delay/affect the transplanting/vegetative phase of the crop, and assured irrigation is very much needed to tackle the drought situation. During themonth of December, all the meteorological subdivisions except Jharkhand show a significant decreasing trend of rainfall during recent normal period NP4. The decrease of rainfall during December may hamper sowing of wheat, which is the important rabi crop (November–March) in most parts of this region. Maximum temperature shows significant rising trend of 0.008°C/year (at 0.01 level) during monsoon season and 0.014°C/year (at 0.01 level) during post-monsoon season during the period 1914– 2003. The annual maximum temperature also shows significant increasing trend of 0.008°C/year (at 0.01 level) during the same period. Minimum temperature shows significant rising trend of 0.012°C/year (at 0.01 level) during postmonsoon season and significant falling trend of 0.002°C/year (at 0.05 level) during monsoon season. A significant 4– 8 years peak periodicity band has been noticed during September over Western UP, and 30–34 years periodicity has been observed during July over Bihar subdivision. However, as far as CNE India is concerned, no significant periodicity has been noticed in any of the time series.
Resumo:
This doctoral thesis addresses the growing concern about the significant changes in the climatic and weather patterns due to the aerosol loading that have taken place in the Indo Gangetic Plain(IGP)which includes most of the Northern Indian region. The study region comprises of major industrial cities in India (New Delhi, Kanpur, Allahabad, Jamshedpur and Kolkata). Northern and central parts of India are one of the most thickly populated areas in the world and have the most intensely farmed areas. Rapid increase in population and urbanization has resulted in an abrupt increase in aerosol concentrations in recent years. The IGP has a major source of coal; therefore most of the industries including numerous thermal power plants that run on coal are located around this region. They inject copious amount of aerosols into the atmosphere. Moreover, the transport of dust aerosols from arid locations is prevalent during the dry months which increase the aerosol loading in theatmosphere. The topography of the place is also ideal for the congregation of aerosols. It is bounded by the Himalayas in the north, Thar Desert in the west, the Vindhyan range in the south and Brahmaputra ridge in the east. During the non‐monsoon months (October to May) the weather in the location is dry with very little rainfall. Surface winds are weak during most of the time in this dry season. The aerosols that reach the location by means of long distance transport and from regional sources get accumulated under these favourable conditions. The increase in aerosol concentration due to the complex combination of aerosol transport and anthropogenic factors mixed with the contribution from the natural sources alters the optical properties and the life time of clouds in the region. The associated perturbations in radiative balance have a significant impact on the meteorological parameters and this in turn determines the precipitation forming process. Therefore, any change in weather which disturbs the normal hydrological pattern is alarming in the socio‐economic point of view. Hence, the main focus of this work is to determine the variation in transport and distribution of aerosols in the region and to understand the interaction of these aerosols with meteorological parameters and cloud properties.