1 resultado para Predicting model
em School of Medicine, Washington University, United States
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (3)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Boston University Digital Common (1)
- Brock University, Canada (6)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- Cambridge University Engineering Department Publications Database (16)
- CentAUR: Central Archive University of Reading - UK (51)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (18)
- Collection Of Biostatistics Research Archive (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (17)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (10)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (12)
- Indian Institute of Science - Bangalore - Índia (21)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (37)
- Queensland University of Technology - ePrints Archive (528)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (13)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (8)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (1)
- University of Connecticut - USA (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (16)
- University of Washington (3)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
Most cochlear implant (CI) users perceive music poorly. Little is known, however, about the musical enjoyment received by CI users. The author examined possible relationships between musical enjoyment and music perception tasks through the use of 1) multiple musical tests, and 2) two groups of listeners: normal-hearing (NH) listeners with a CI-simulation and actual CI users. The two groups’ performances are compared to determine whether NH participants listening to music via CI-simulation software are a good model for actual CI users for perceiving music.