3 resultados para databases and data mining

em Universit


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les quatre principales activités de la gestion de risque thérapeutique comportent l’identification, l’évaluation, la minimisation, et la communication du risque. Ce mémoire aborde les problématiques liées à l’identification et à la minimisation du risque par la réalisation de deux études dont les objectifs sont de: 1) Développer et valider un outil de « data mining » pour la détection des signaux à partir des banques de données de soins de santé du Québec; 2) Effectuer une revue systématique afin de caractériser les interventions de minimisation de risque (IMR) ayant été implantées. L’outil de détection de signaux repose sur la méthode analytique du quotient séquentiel de probabilité (MaxSPRT) en utilisant des données de médicaments délivrés et de soins médicaux recueillis dans une cohorte rétrospective de 87 389 personnes âgées vivant à domicile et membres du régime d’assurance maladie du Québec entre les années 2000 et 2009. Quatre associations « médicament-événement indésirable (EI) » connues et deux contrôles « négatifs » ont été utilisés. La revue systématique a été faite à partir d’une revue de la littérature ainsi que des sites web de six principales agences réglementaires. La nature des RMIs ont été décrites et des lacunes de leur implémentation ont été soulevées. La méthode analytique a mené à la détection de signaux dans l'une des quatre combinaisons médicament-EI. Les principales contributions sont: a) Le premier outil de détection de signaux à partir des banques de données administratives canadiennes; b) Contributions méthodologiques par la prise en compte de l'effet de déplétion des sujets à risque et le contrôle pour l'état de santé du patient. La revue a identifié 119 IMRs dans la littérature et 1,112 IMRs dans les sites web des agences réglementaires. La revue a démontré qu’il existe une augmentation des IMRs depuis l’introduction des guides réglementaires en 2005 mais leur efficacité demeure peu démontrée.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triple quadrupole mass spectrometers coupled with high performance liquid chromatography are workhorses in quantitative bioanalyses. It provides substantial benefits including reproducibility, sensitivity and selectivity for trace analysis. Selected Reaction Monitoring allows targeted assay development but data sets generated contain very limited information. Data mining and analysis of non-targeted high-resolution mass spectrometry profiles of biological samples offer the opportunity to perform more exhaustive assessments, including quantitative and qualitative analysis. The objectives of this study was to test method precision and accuracy, statistically compare bupivacaine drug concentration in real study samples and verify if high resolution and accurate mass data collected in scan mode can actually permit retrospective data analysis, more specifically, extract metabolite related information. The precision and accuracy data presented using both instruments provided equivalent results. Overall, the accuracy was ranging from 106.2 to 113.2% and the precision observed was from 1.0 to 3.7%. Statistical comparisons using a linear regression between both methods reveal a coefficient of determination (R2) of 0.9996 and a slope of 1.02 demonstrating a very strong correlation between both methods. Individual sample comparison showed differences from -4.5% to 1.6% well within the accepted analytical error. Moreover, post acquisition extracted ion chromatograms at m/z 233.1648 ± 5 ppm (M-56) and m/z 305.2224 ± 5 ppm (M+16) revealed the presence of desbutyl-bupivacaine and three distinct hydroxylated bupivacaine metabolites. Post acquisition analysis allowed us to produce semiquantitative evaluations of the concentration-time profiles for bupicavaine metabolites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les positions des évènements de recombinaison s’agrègent ensemble, formant des hotspots déterminés en partie par la protéine à évolution rapide PRDM9. En particulier, ces positions de hotspots sont déterminées par le domaine de doigts de zinc (ZnF) de PRDM9 qui reconnait certains motifs d’ADN. Les allèles de PRDM9 contenant le ZnF de type k ont été préalablement associés avec une cohorte de patients affectés par la leucémie aigüe lymphoblastique. Les allèles de PRDM9 sont difficiles à identifier à partir de données de séquençage de nouvelle génération (NGS), en raison de leur nature répétitive. Dans ce projet, nous proposons une méthode permettant la caractérisation d’allèles de PRDM9 à partir de données de NGS, qui identifie le nombre d’allèles contenant un type spécifique de ZnF. Cette méthode est basée sur la corrélation entre les profils représentant le nombre de séquences nucléotidiques uniques à chaque ZnF retrouvés chez les lectures de NGS simulées sans erreur d’une paire d’allèles et chez les lectures d’un échantillon. La validité des prédictions obtenues par notre méthode est confirmée grâce à analyse basée sur les simulations. Nous confirmons également que la méthode peut correctement identifier le génotype d’allèles de PRDM9 qui n’ont pas encore été identifiés. Nous conduisons une analyse préliminaire identifiant le génotype des allèles de PRDM9 contenant un certain type de ZnF dans une cohorte de patients atteints de glioblastomes multiforme pédiatrique, un cancer du cerveau caractérisé par les mutations récurrentes dans le gène codant pour l’histone H3, la cible de l’activité épigénétique de PRDM9. Cette méthode ouvre la possibilité d’identifier des associations entre certains allèles de PRDM9 et d’autres types de cancers pédiatriques, via l’utilisation de bases de données de NGS de cellules tumorales.