1 resultado para Hypergraphs

em Universit


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le Théorème de Sylvester-Gallai affirme que dans un ensemble fini S de points dans le plan, où les points ne sont pas tous sur une même droite, il y a une droite qui passe par exactement deux points de S. Chvátal [14] a étendu la notion de droites aux espaces métriques arbitraires et a fait une conjecture généralisant le Théorème de Sylvester-Gallai. Chen [10] a démontré cette conjecture qui s’appelle maintenant le Théorème de Sylvester-Chvátal. En 1943, Erdos [18] a remarqué un corollaire pour le Théorème de Sylvester-Gallai affirmant que, dans un ensemble fini V de points dans le plan, où les points ne sont pas tous sur une droite, le nombre de droites qui passent par au moins deux points de V est au moins |V |. De Bruijn et Erdos [7] ont généralisé ce corollaire, en utilisant une définition généralisée de droite (voir Chapitre 2) et ont prouvé que tout ensemble de n points, où les points ne sont pas tous sur une même droite, détermine au moins n droites distinctes. Dans le présent mémoire, nous allons étudier les théorèmes mentionnés ci-dessus. Nous allons aussi considérer le Théorème de De Bruijn-Erdos dans le cadre des hypergraphes et des espaces métriques.