6 resultados para video sequence matching

em Université de Montréal, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les pays industrialisés comme le Canada doivent faire face au vieillissement de leur population. En particulier, la majorité des personnes âgées, vivant à domicile et souvent seules, font face à des situations à risques telles que des chutes. Dans ce contexte, la vidéosurveillance est une solution innovante qui peut leur permettre de vivre normalement dans un environnement sécurisé. L’idée serait de placer un réseau de caméras dans l’appartement de la personne pour détecter automatiquement une chute. En cas de problème, un message pourrait être envoyé suivant l’urgence aux secours ou à la famille via une connexion internet sécurisée. Pour un système bas coût, nous avons limité le nombre de caméras à une seule par pièce ce qui nous a poussé à explorer les méthodes monoculaires de détection de chutes. Nous avons d’abord exploré le problème d’un point de vue 2D (image) en nous intéressant aux changements importants de la silhouette de la personne lors d’une chute. Les données d’activités normales d’une personne âgée ont été modélisées par un mélange de gaussiennes nous permettant de détecter tout événement anormal. Notre méthode a été validée à l’aide d’une vidéothèque de chutes simulées et d’activités normales réalistes. Cependant, une information 3D telle que la localisation de la personne par rapport à son environnement peut être très intéressante pour un système d’analyse de comportement. Bien qu’il soit préférable d’utiliser un système multi-caméras pour obtenir une information 3D, nous avons prouvé qu’avec une seule caméra calibrée, il était possible de localiser une personne dans son environnement grâce à sa tête. Concrêtement, la tête de la personne, modélisée par une ellipsoide, est suivie dans la séquence d’images à l’aide d’un filtre à particules. La précision de la localisation 3D de la tête a été évaluée avec une bibliothèque de séquence vidéos contenant les vraies localisations 3D obtenues par un système de capture de mouvement (Motion Capture). Un exemple d’application utilisant la trajectoire 3D de la tête est proposée dans le cadre de la détection de chutes. En conclusion, un système de vidéosurveillance pour la détection de chutes avec une seule caméra par pièce est parfaitement envisageable. Pour réduire au maximum les risques de fausses alarmes, une méthode hybride combinant des informations 2D et 3D pourrait être envisagée.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thése a été réalisée dans le cadre d'une cotutelle avec l'Institut National Polytechnique de Grenoble (France). La recherche a été effectuée au sein des laboratoires de vision 3D (DIRO, UdM) et PERCEPTION-INRIA (Grenoble).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work done in this master's thesis, presents a new system for the recognition of human actions from a video sequence. The system uses, as input, a video sequence taken by a static camera. A binary segmentation method of the the video sequence is first achieved, by a learning algorithm, in order to detect and extract the different people from the background. To recognize an action, the system then exploits a set of prototypes generated from an MDS-based dimensionality reduction technique, from two different points of view in the video sequence. This dimensionality reduction technique, according to two different viewpoints, allows us to model each human action of the training base with a set of prototypes (supposed to be similar for each class) represented in a low dimensional non-linear space. The prototypes, extracted according to the two viewpoints, are fed to a $K$-NN classifier which allows us to identify the human action that takes place in the video sequence. The experiments of our model conducted on the Weizmann dataset of human actions provide interesting results compared to the other state-of-the art (and often more complicated) methods. These experiments show first the sensitivity of our model for each viewpoint and its effectiveness to recognize the different actions, with a variable but satisfactory recognition rate and also the results obtained by the fusion of these two points of view, which allows us to achieve a high performance recognition rate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’action humaine dans une séquence vidéo peut être considérée comme un volume spatio- temporel induit par la concaténation de silhouettes dans le temps. Nous présentons une approche spatio-temporelle pour la reconnaissance d’actions humaines qui exploite des caractéristiques globales générées par la technique de réduction de dimensionnalité MDS et un découpage en sous-blocs afin de modéliser la dynamique des actions. L’objectif est de fournir une méthode à la fois simple, peu dispendieuse et robuste permettant la reconnaissance d’actions simples. Le procédé est rapide, ne nécessite aucun alignement de vidéo, et est applicable à de nombreux scénarios. En outre, nous démontrons la robustesse de notre méthode face aux occultations partielles, aux déformations de formes, aux changements d’échelle et d’angles de vue, aux irrégularités dans l’exécution d’une action, et à une faible résolution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce travail présente deux nouveaux systèmes simples d'analyse de la marche humaine grâce à une caméra de profondeur (Microsoft Kinect) placée devant un sujet marchant sur un tapis roulant conventionnel, capables de détecter une marche saine et celle déficiente. Le premier système repose sur le fait qu'une marche normale présente typiquement un signal de profondeur lisse au niveau de chaque pixel avec moins de hautes fréquences, ce qui permet d'estimer une carte indiquant l'emplacement et l'amplitude de l'énergie de haute fréquence (HFSE). Le second système analyse les parties du corps qui ont un motif de mouvement irrégulier, en termes de périodicité, lors de la marche. Nous supposons que la marche d'un sujet sain présente partout dans le corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. Nous estimons, à partir de la séquence vidéo de chaque sujet, une carte montrant les zones d'irrégularités de la marche (également appelées énergie de bruit apériodique). La carte avec HFSE ou celle visualisant l'énergie de bruit apériodique peut être utilisée comme un bon indicateur d'une éventuelle pathologie, dans un outil de diagnostic précoce, rapide et fiable, ou permettre de fournir des informations sur la présence et l'étendue de la maladie ou des problèmes (orthopédiques, musculaires ou neurologiques) du patient. Même si les cartes obtenues sont informatives et très discriminantes pour une classification visuelle directe, même pour un non-spécialiste, les systèmes proposés permettent de détecter automatiquement les individus en bonne santé et ceux avec des problèmes locomoteurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

À mesure que la population des personnes agées dans les pays industrialisés augmente au fil de années, les ressources nécessaires au maintien du niveau de vie de ces personnes augmentent aussi. Des statistiques montrent que les chutes sont l’une des principales causes d’hospitalisation chez les personnes agées, et, de plus, il a été démontré que le risque de chute d’une personne agée a une correlation avec sa capacité de maintien de l’équilibre en étant debout. Il est donc d’intérêt de développer un système automatisé pour analyser l’équilibre chez une personne, comme moyen d’évaluation objective. Dans cette étude, nous avons proposé l’implémentation d’un tel système. En se basant sur une installation simple contenant une seule caméra sur un trépied, on a développé un algorithme utilisant une implémentation de la méthode de détection d’objet de Viola-Jones, ainsi qu’un appariement de gabarit, pour suivre autant le mouvement latéral que celui antérieur-postérieur d’un sujet. On a obtenu des bons résultats avec les deux types de suivi, cependant l’algorithme est sensible aux conditions d’éclairage, ainsi qu’à toute source de bruit présent dans les images. Il y aurait de l’intérêt, comme développement futur, d’intégrer les deux types de suivi, pour ainsi obtenir un seul ensemble de données facile à interpréter.