5 resultados para vertical extensions

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper studies vertical R&D spillovers between upstream and downstream firms. The model incorporates two vertically related industries, with horizontal spillovers within each industry and vertical spillovers between the two industries. Four types of R&D cooperation are studied : no cooperation, horizontal cooperation, vertical cooperation, and simultaneous horizontal and vertical cooperation. Vertical spillovers always increase R&D and welfare, while horizontal spillovers may increase or decrease them. The comparison of cooperative settings in terms of R&D shows that no setting uniformly dominates the others. Which type of cooperation yields more R&D depends on horizontal and vertical spillovers, and market structure. The ranking of cooperative structures hinges on the signs and magnitudes of three competitive externalities (vertical, horizontal, and diagonal) which capture the effect of the R&D of a firm on the profits of other firms. One of the basic results of the strategic investment literature is that cooperation between competitors increases (decreases) R&D when horizontal spillovers are high (low); the model shows that this result does not necessarily hold when vertical spillovers and vertical cooperation are taken into account. The paper proposes a theory of innovation and market structure, showing that the relation between innovation and competition depends on horizontal spillovers, vertical spillovers, and cooperative settings. The private incentives for R&D cooperation are addressed. It is found that buyers and sellers have divergent interests regarding the choice of cooperative settings and that spillovers increase the likelihood of the emergence of cooperation in a decentralized equilibrium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suzumura shows that a binary relation has a weak order extension if and only if it is consistent. However, consistency is demonstrably not sufficient to extend an upper semi-continuous binary relation to an upper semicontinuous weak order. Jaffray proves that any asymmetric (or reflexive), transitive and upper semicontinuous binary relation has an upper semicontinuous strict (or weak) order extension. We provide sufficient conditions for existence of upper semicontinuous extensions of consistence rather than transitive relations. For asymmetric relations, consistency and upper semicontinuity suffice. For more general relations, we prove one theorem using a further consistency property and another with an additional continuity requirement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides new versions of Harsanyi’s social aggregation theorem that are formulated in terms of prospects rather than lotteries. Strengthening an earlier result, fixed-population ex-ante utilitarianism is characterized in a multi-profile setting with fixed probabilities. In addition, we extend the social aggregation theorem to social-evaluation problems under uncertainty with a variable population and generalize our approach to uncertain alternatives, which consist of compound vectors of probability distributions and prospects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse traite de deux thèmes principaux. Le premier concerne l'étude des empilements apolloniens généralisés de cercles et de sphères. Généralisations des classiques empilements apolloniens, dont l'étude remonte à la Grèce antique, ces objets s'imposent comme particulièrement attractifs en théorie des nombres. Dans cette thèse sera étudié l'ensemble des courbures (les inverses des rayons) des cercles ou sphères de tels empilements. Sous de bonnes conditions, ces courbures s'avèrent être toutes entières. Nous montrerons qu'elles vérifient un principe local-global partiel, nous compterons le nombre de cercles de courbures plus petites qu'une quantité donnée et nous nous intéresserons également à l'étude des courbures premières. Le second thème a trait à la distribution angulaire des idéaux (ou plutôt ici des nombres idéaux) des corps de nombres quadratiques imaginaires (que l'on peut voir comme la distribution des points à coordonnées entières sur des ellipses). Nous montrerons que la discrépance de l'ensemble des angles des nombres idéaux entiers de norme donnée est faible et nous nous intéresserons également au problème des écarts bornés entre les premiers d'extensions quadratiques imaginaires dans des secteurs.