2 resultados para ultra-wideband (UWB) antenna

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les siliciures métalliques constituent un élément crucial des contacts électriques des transistors que l'on retrouve au coeur des circuits intégrés modernes. À mesure qu'on réduit les dimensions de ces derniers apparaissent de graves problèmes de formation, liés par exemple à la limitation des processus par la faible densité de sites de germination. L'objectif de ce projet est d'étudier les mécanismes de synthèse de siliciures métalliques à très petite échelle, en particulier le NiSi, et de déterminer l’effet de l’endommagement du Si par implantation ionique sur la séquence de phase. Nous avons déterminé la séquence de formation des différentes phases du système Ni-Si d’échantillons possédant une couche de Si amorphe sur lesquels étaient déposés 10 nm de Ni. Celle-ci a été obtenue à partir de mesures de diffraction des rayons X résolue en temps et, pour des échantillons trempés à des températures critiques du processus, l’identité des phases et la composition et la microstructure ont été déterminées par mesures de figures de pôle, spectrométrie par rétrodiffusion Rutherford et microscopie électronique en transmission (TEM). Nous avons constaté que pour environ la moitié des échantillons, une réaction survenait spontanément avant le début du recuit thermique, le produit de la réaction étant du Ni2Si hexagonal, une phase instable à température de la pièce, mélangée à du NiSi. Dans de tels échantillons, la température de formation du NiSi, la phase d’intérêt pour la microélectronique, était significativement abaissée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La synthèse de siliciures métalliques sous la forme de films ultra-minces demeure un enjeu majeur en technologie CMOS. Le contrôle du budget thermique, afin de limiter la diffusion des dopants, est essentiel. Des techniques de recuit ultra-rapide sont alors couramment utilisées. Dans ce contexte, la technique de nanocalorimétrie est employée afin d'étudier, in situ, la formation en phase solide des siliciures de Ni à des taux de chauffage aussi élevés que 10^5 K/s. Des films de Ni, compris entre 9.3 et 0.3 nm sont déposés sur des calorimètres avec un substrat de a-Si ou de Si(100). Des mesures de diffraction de rayons X, balayées en température à 3 K/s, permettent de comparer les séquences de phase obtenues à bas taux de chauffage sur des échantillons de contrôle et à ultra-haut taux de chauffage sur les calorimètres. En premier lieu, il est apparu que l'emploi de calorimètres de type c-NC, munis d'une couche de 340 nm de Si(100), présente un défi majeur : un signal endothermique anormal vient fausser la mesure à haute température. Des micro-défauts au sein de la membrane de SiNx créent des courts-circuits entre la bande chauffante de Pt du calorimètre et l'échantillon métallique. Ce phénomène diminue avec l'épaisseur de l'échantillon et n'a pas d'effet en dessous de 400 °C tant que les porteurs de charge intrinsèques au Si ne sont pas activés. Il est possible de corriger la mesure de taux de chaleur en fonction de la température avec une incertitude de 12 °C. En ce qui a trait à la formation des siliciures de Ni à ultra-haut taux de chauffage, l'étude montre que la séquence de phase est modifiée. Les phases riches en m étal, Ni2Si et théta, ne sont pas détectées sur Si(100) et la cinétique de formation favorise une amorphisation en phase solide en début de réaction. Les enthalpies de formation pour les couches de Ni inférieures à 10 nm sont globalement plus élevées que dans le cas volumique, jusqu' à 66 %. De plus, les mesures calorimétriques montrent clairement un signal endothermique à haute température, témoignant de la compétition que se livrent la réaction de phase et l'agglomération de la couche. Pour les échantillons recuits a 3 K/s sur Si(100), une épaisseur critique telle que décrite par Zhang et Luo, et proche de 4 nm de Ni, est supposée. Un modèle est proposé, basé sur la difficulté de diffusion des composants entre des grains de plus en plus petits, afin d'expliquer la stabilité accrue des couches de plus en plus fines. Cette stabilité est également observée par nanocalorimétrie à travers le signal endothermique. Ce dernier se décale vers les hautes températures quand l'épaisseur du film diminue. En outre, une 2e épaisseur critique, d'environ 1 nm de Ni, est remarquée. En dessous, une seule phase semble se former au-dessus de 400 °C, supposément du NiSi2.