4 resultados para targeting

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD4+ T lymphocytes play an important role in CD8+ T cell-mediated responses against tumors. Considering that about 20% of melanomas express major histocompatibility complex (MHC) class II, it is plausible that concomitant antigenic presentation by MHC class I and class II complexes shapes positive (helper T cells) or negative (regulatory T cells) anti-tumor responses. Interestingly, gp100, a melanoma antigen, can be presented by both MHC class I and class II when expressed endogenously, suggesting that it can reach endosomal/MHC class II compartments (MIIC). Here, we demonstrated that the gp100 putative amino-terminal signal sequence and the last 70 residues in carboxy-terminus, are essential for MIIC localization and MHC class II presentation. Confocal microscopy analyses confirmed that gp100 was localized in LAMP-1+ endosomal/MIIC. Gp100-targeting sequences were characterized by deleting different sections in the carboxy-terminus (residues 590 to 661). Transfection in 293T cells, expressing MHC class I and class II molecules, revealed that specific deletions in carboxy-terminus resulted in decreased MHC class II presentation, without effects on MHC class I presentation, suggesting a role in MIIC trafficking for these deleted sections. Then, we used these gp100-targeting sequences to mobilize the green fluorescent protein (GFP) to endosomal compartments, and to allow MHC class II and class I presentation of minimal endogenous epitopes. Thus, we concluded that these specific sequences are MIIC targeting motifs. Consequently, these sequences could be included in expression cassettes for endogenously expressed tumor or viral antigens to promote MHC class II and class I presentation and optimize in vivo T cell responses, or as an in vitro tool for characterization of new MHC class II epitopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper develops and estimates a game-theoretical model of inflation targeting where the central banker's preferences are asymmetric around the targeted rate. In particular, positive deviations from the target can be weighted more, or less, severely than negative ones in the central banker's loss function. It is shown that some of the previous results derived under the assumption of symmetry are not robust to the generalization of preferences. Estimates of the central banker's preference parameters for Canada, Sweden, and the United Kingdom are statistically different from the ones implied by the commonly used quadratic loss function. Econometric results are robust to different forecasting models for the rate of unemployment but not to the use of measures of inflation broader than the one targeted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports graphical and statistical evidence that the inflation targeting regimes in Canada and the UK - but not in Australia, New Zealand, or Sweden - actually resemble price-level targeting. In particular, the price level closely tracks the path implied by the inflation target, and the time-series predictions of the "bygones-are-bygones" version of inflation targeting are rejected by the data in favor of those implied by price-level targeting. These results indicate heterogeneity in the actual application of inflation targeting across countries and, for Canada and the UK, imply that the characterization of inflation targeting as a policy where shocks are accommodated is at odds with the data. Moreover, up to extent that their current policies already resemble price-level targeting, the welfare gains of replacing inflation with (explicit) price-level targeting are likely to be small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor bioavailability and poor pharmacokinetic characteristics are some of the leading causes of drug development failure. Therefore, poorly-soluble drugs, fragile proteins or nucleic acid products may benefit from their encapsulation in nanosized vehicles, providing enhanced solubilisation, protection against degradation, and increased access to pathological compartments. A key element for the success of drug-loaded nanocarriers (NC) is their ability to either cross biological barriers themselves or allow loaded drugs to traverse them to achieve optimal pharmacological action at pathological sites. Depending on the mode of administration, NC may have to cross different physiological barriers in their journey towards their target. In this review, the crossing of biological barriers by passive targeting strategies will be presented for intravenous delivery (vascular endothelial lining, particularly for tumour vasculature and blood-brain barrier targeting), oral administration (gastrointestinal lining) and upper airway administration (pulmonary epithelium). For each specific barrier, background information will be provided on the structure and biology of the tissues involved as well as available pathways for nano-objects or loaded drugs (diffusion and convection through fenestration, transcytosis, tight junction crossing, etc.). The determinants of passive targeting − size, shape, surface chemistry, surface patterning of nanovectors − will be discussed in light of current results. Perspectives on each mode of administration will be presented. The focus will be on polymeric nanoparticles and dendrimers although advances in liposome technology will be also reported as they represent the largest body in the drug delivery literature.