3 resultados para structure characterization

em Université de Montréal, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’électrofilage est une technique permettant de fabriquer des fibres polymériques dont le diamètre varie entre quelques nanomètres et quelques microns. Ces fibres ont donc un rapport surface/volume très élevé. Les fibres électrofilées pourraient trouver des applications dans le relargage de médicaments et le génie tissulaire, comme membranes et capteurs chimiques, ou dans les nanocomposites et dispositifs électroniques. L’électrofilage était initialement utilisé pour préparer des toiles de fibres désordonnées, mais il est maintenant possible d’aligner les fibres par l’usage de collecteurs spéciaux. Cependant, il est important de contrôler non seulement l’alignement macroscopique des fibres mais aussi leur orientation au niveau moléculaire puisque l’orientation influence les propriétés mécaniques, optiques et électriques des polymères. Les complexes moléculaires apparaissent comme une cible de choix pour produire des nanofibres fortement orientées. Dans les complexes d’inclusion d’urée, les chaînes polymères sont empilées dans des canaux unidimensionnels construits à partir d’un réseau tridimensionnel de molécules d’urée liées par des ponts hydrogène. Ainsi, les chaînes polymère sonts très allongées à l’échelle moléculaire. Des nanofibres du complexe PEO-urée ont été préparées pour la première fois par électrofilage de suspensions et de solutions. Tel qu’attendu, une orientation moléculaire inhabituellement élevée a été observée dans ces fibres. De tels complexes orientés pourraient être utilisés à la fois dans des études fondamentales et dans la préparation de matériaux hiérarchiquement structurés. La méthode d’électrofilage peut parfois aussi être utilisée pour préparer des matériaux polymériques métastables qui ne peuvent pas être préparés par des méthodes conventionnelles. Ici, l’électrofilage a été utilisé pour préparer des fibres des complexes stables (α) et "métastables" (β) entre le PEO et l’urée. La caractérisation du complexe β, qui était mal connu, révèle un rapport PEO:urée de 12:8 appartenant au système orthorhombique avec a = 1.907 nm, b = 0.862 nm et c = 0.773 nm. Les chaînes de PEO sont orientées selon l’axe de la fibre. Leur conformation est significativement affectée par les ponts hydrogène. Une structure en couches a été suggérée pour la forme β, plutôt que la structure conventionnelle en canaux adoptée par la forme α. Nos résultats indiquent que le complexe β est thermodynamiquement stable avant sa fonte et peut se transformer en forme α et en PEO liquide par un processus de fonte et recristallisation à 89 ºC. Ceci va dans le sens contraire aux observations faites avec le complexe β obtenu par trempe du complexe α fondu. En effet, le complexe β ainsi obtenu est métastable et contient des cristaux d’urée. Il peut subir une transition de phases cinétique solide-solide pour produire du complexe α dans une vaste gamme de températures. Cette transition est induite par un changement de conformation du PEO et par la formation de ponts hydrogène intermoléculaires entre l’urée et le PEO. Le diagramme de phases du système PEO-urée a été tracé sur toute la gamme de compositions, ce qui a permis d’interpréter la formation de plusieurs mélanges qui ne sont pas à l’équilibre mais qui sont été observés expérimentalement. La structure et le diagramme de phases du complexe PEO-thiourée, qui est aussi un complexe très mal connu, ont été étudiés en détail. Un rapport molaire PEO :thiourée de 3:2 a été déduit pour le complexe, et une cellule monoclinique avec a = 0.915 nm, b = 1.888 nm, c = 0.825 nm et β = 92.35º a été déterminée. Comme pour le complexe PEO-urée de forme β, une structure en couches a été suggérée pour le complexe PEO-thiourée, dans laquelle les molécules de thiourée seraient disposées en rubans intercalés entre deux couches de PEO. Cette structure en couches pourrait expliquer la température de fusion beaucoup plus faible des complexes PEO-thiourée (110 ºC) et PEO-urée de forme β (89 ºC) en comparaison aux structures en canaux du complexe PEO-urée de forme α (143 ºC).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La détermination de la structure tertiaire du ribosome fut une étape importante dans la compréhension du mécanisme de la synthèse des protéines. Par contre, l’élucidation de la structure du ribosome comme tel ne permet pas une compréhension de sa fonction. Pour mieux comprendre la nature des relations entre la structure et la fonction du ribosome, sa structure doit être étudiée de manière systématique. Au cours des dernières années, nous avons entrepris une démarche systématique afin d’identifier et de caractériser de nouveaux motifs structuraux qui existent dans la structure du ribosome et d’autres molécules contenant de l’ARN. L’analyse de plusieurs exemples d’empaquetage de deux hélices d’ARN dans la structure du ribosome nous a permis d’identifier un nouveau motif structural, nommé « G-ribo ». Dans ce motif, l’interaction d’une guanosine dans une hélice avec le ribose d’un nucléotide d’une autre hélice donne naissance à un réseau d’interactions complexes entre les nucléotides voisins. Le motif G-ribo est retrouvé à 8 endroits dans la structure du ribosome. La structure du G-ribo possède certaines particularités qui lui permettent de favoriser la formation d’un certain type de pseudo-nœuds dans le ribosome. L’analyse systématique de la structure du ribosome et de la ARNase P a permis d’identifier un autre motif structural, nommé « DTJ » ou « Double-Twist Joint motif ». Ce motif est formé de trois courtes hélices qui s’empilent l’une sur l’autre. Dans la zone de contact entre chaque paire d’hélices, deux paires de bases consécutives sont surenroulées par rapport à deux paires de bases consécutives retrouvées dans l’ARN de forme A. Un nucléotide d’une paire de bases est toujours connecté directement à un nucléotide de la paire de bases surenroulée, tandis que les nucléotides opposés sont connectés par un ou plusieurs nucléotides non appariés. L’introduction d’un surenroulement entre deux paires de bases consécutives brise l’empilement entre les nucléotides et déstabilise l’hélice d’ARN. Dans le motif DTJ, les nucléotides non appariés qui lient les deux paires de bases surenroulées interagissent avec une des trois hélices qui forment le motif, offrant ainsi une stratégie élégante de stabilisation de l’arrangement. Pour déterminer les contraintes de séquences imposées sur la structure tertiaire d’un motif récurrent dans le ribosome, nous avons développé une nouvelle approche expérimentale. Nous avons introduit des librairies combinatoires de certains nucléotides retrouvés dans des motifs particuliers du ribosome. Suite à l’analyse des séquences alternatives sélectionnées in vivo pour différents représentants d’un motif, nous avons été en mesure d’identifier les contraintes responsables de l’intégrité d’un motif et celles responsables d’interactions avec les éléments qui forment le contexte structural du motif. Les résultats présentés dans cette thèse élargissent considérablement notre compréhension des principes de formation de la structure d’ARN et apportent une nouvelle façon d’identifier et de caractériser de nouveaux motifs structuraux d’ARN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les liposomes sont des nanovecteurs polyvalents et prometteurs quant à leur utilisation dans plusieurs domaines. Il y a une décennie, un nouveau type de liposome constitué d’amphiphiles monoalkylés et de stérols est né fortuitement dans notre groupe. Ils sont nommés Stérosomes puisqu’ils contiennent une grande proportion de stérols, entre 50 et 70 mol %. Les objectifs de cette thèse sont de développer de nouvelles formulations de Stérosomes ayant des caractéristiques spécifiques et d’acquérir une compréhension plus profonde des règles physicochimiques qui dictent leur comportement de phase. Nous avons spécifiquement examiné le rôle de motifs moléculaires des stérols, de la charge interfaciale et de la capacité à former des liaisons H dans les interactions intermoléculaires menant à l’autoassemblage. Le comportement de phase a été caractérisé par calorimétrie différentielle à balayage (DSC), par spectroscopie infrarouge (IR) et par spectroscopie de résonance magnétique nucléaire du deutérium (²H NMR). Premièrement, nous avons établi certaines corrélations entre la structure des stérols, leur tendance à former des bicouches fluides en présence d'amphiphile monoalkylé et la perméabilité des grandes vésicules unilamellaires (LUV) formées. La nature des stérols module les propriétés de mélange avec de l’acide palmitique (PA). Les stérols portant une chaîne volumineuse en position C17 sont moins aptes à induire des bicouches fluides que ceux qui ont une chaîne plus simple, comme celle du cholestérol. Un grand ordre de la chaîne alkyle de PA est un effet commun à tous les stérols investigués. Il a été démontré que la perméabilité des LUV peut être contrôlée en utilisant des stérols différents. Cependant, ces stérols n’ont aucun impact significatif sur la sensibilité des Stérosomes au pH. Afin de créer des liposomes qui sont sensibles au pH et qui ont une charge positive à la surface, des Stérosomes composés de stéarylamine et de cholestérol (Chol) ont été conçus et caractérisés. Il a été conclu que l’état de protonation de l’amine, dans ce travail, ou du groupe carboxylique, dans un travail précédent, confère une sensibilité au pH et détermine la charge à la surface du liposome. Les premiers Stérosomes complètement neutres ont été fabriqués en utilisant un réseau de fortes liaisons H intermoléculaires. Le groupe sulfoxyde est capable de former de fortes liaisons H avec le cholestérol et les molécules d’eau. Une bicouche fluide métastable a été obtenue, à la température de la pièce, à partir d'un mélange équimolaire d’octadécyl méthyl sulfoxyde (OMSO) et de Chol. Ce comportement distinct a permis d’extruder le mélange pour former des LUV à la température de la pièce. Après 30 h, le temps de vie de la phase métastable, des Stérosomes stables et imperméables existaient toujours sous une forme solide. Un diagramme de température-composition a été proposé afin de résumer le comportement de phase des mélanges d’OMSO/Chol. Finalement, nous avons élaboré des Stérosomes furtifs en incorporant du polyéthylène glycol (PEG) avec une ancre de cholestérol (PEG-Chol) à l’interface de Stérosomes de PA/Chol. Jusqu’à 20 mol % de PEG-Chol peut être introduit sans perturber la structure de la bicouche. La présence du PEG-Chol n’a aucun impact significatif sur la perméabilité de la LUV. L'encapsulation active de la doxorubicine, un médicament contre le cancer, a été réalisée malgré la faible perméabilité de ces LUV et la présence du PEG à l’interface. L’inclusion de PEG a modifié considérablement les propriétés de l’interface et a diminué la libération induite par la variation de pH observée avec des LUV nues de PA/Chol. Cette formulation inédite est potentiellement utile pour l’administration intraveineuse de médicaments.