28 resultados para structural uncertainty
em Université de Montréal, Canada
Resumo:
In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data.
Resumo:
In this article we study the effect of uncertainty on an entrepreneur who must choose the capacity of his business before knowing the demand for his product. The unit profit of operation is known with certainty but there is no flexibility in our one-period framework. We show how the introduction of global uncertainty reduces the investment of the risk neutral entrepreneur and, even more, that the risk averse one. We also show how marginal increases in risk reduce the optimal capacity of both the risk neutral and the risk averse entrepreneur, without any restriction on the concave utility function and with limited restrictions on the definition of a mean preserving spread. These general results are explained by the fact that the newsboy has a piecewise-linear, and concave, monetary payoff witha kink endogenously determined at the level of optimal capacity. Our results are compared with those in the two literatures on price uncertainty and demand uncertainty, and particularly, with the recent contributions of Eeckhoudt, Gollier and Schlesinger (1991, 1995).
Resumo:
In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.
Resumo:
We extend the class of M-tests for a unit root analyzed by Perron and Ng (1996) and Ng and Perron (1997) to the case where a change in the trend function is allowed to occur at an unknown time. These tests M(GLS) adopt the GLS detrending approach of Dufour and King (1991) and Elliott, Rothenberg and Stock (1996) (ERS). Following Perron (1989), we consider two models : one allowing for a change in slope and the other for both a change in intercept and slope. We derive the asymptotic distribution of the tests as well as that of the feasible point optimal tests PT(GLS) suggested by ERS. The asymptotic critical values of the tests are tabulated. Also, we compute the non-centrality parameter used for the local GLS detrending that permits the tests to have 50% asymptotic power at that value. We show that the M(GLS) and PT(GLS) tests have an asymptotic power function close to the power envelope. An extensive simulation study analyzes the size and power in finite samples under various methods to select the truncation lag for the autoregressive spectral density estimator. An empirical application is also provided.
Resumo:
It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of “quadrics” and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how “conservative” projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Resumo:
This paper proposes a definition of relative uncertainty aversion for decision models under complete uncertainty. It is shown that, for a large class of decision rules characterized by a set of plausible axioms, the new criterion yields a complete ranking of those rules with respect to the relative degree of uncertainty aversion they represent. In addition, we address a combinatorial question that arises in this context, and we examine conditions for the additive representability of our rules.
Multivariate Cointegration in the Presence of Structural Breaks: the Case of Money Demand in Mexico.
Resumo:
In this article we study the effect of uncertainty on an entrepreneur who must choose the capacity of his business before knowing the demand for his product. The unit profit of operation is known with certainty but there is no flexibility in our one-period framework. We show how the introduction of global uncertainty reduces the investment of the risk neutral entrepreneur and, even more, that the risk averse one. We also show how marginal increases in risk reduce the optimal capacity of both the risk neutral and the risk averse entrepreneur, without any restriction on the concave utility function and with limited restrictions on the definition of a mean preserving spread. These general results are explained by the fact that the newsboy has a piecewise-linear, and concave, monetary payoff witha kink endogenously determined at the level of optimal capacity. Our results are compared with those in the two literatures on price uncertainty and demand uncertainty, and particularly, with the recent contributions of Eeckhoudt, Gollier and Schlesinger (1991, 1995).
Resumo:
Uncertainties as to future supply costs of nonrenewable natural resources, such as oil and gas, raise the issue of the choice of supply sources. In a perfectly deterministic world, an efficient use of multiple sources of supply requires that any given market exhausts the supply it can draw from a low cost source before moving on to a higher cost one; supply sources should be exploited in strict sequence of increasing marginal cost, with a high cost source being left untouched as long as a less costly source is available. We find that this may not be the efficient thing to do in a stochastic world. We show that there exist conditions under which it can be efficient to use a risky supply source in order to conserve a cheaper non risky source. The benefit of doing this comes from the fact that it leaves open the possibility of using it instead of the risky source in the event the latter’s future cost conditions suddenly deteriorate. There are also conditions under which it will be efficient to use a more costly non risky source while a less costly risky source is still available. The reason is that this conserves the less costly risky source in order to use it in the event of a possible future drop in its cost.