12 resultados para stochastic numerical methods
em Université de Montréal, Canada
Resumo:
La méthode IIM (Immersed Interface Method) permet d'étendre certaines méthodes numériques à des problèmes présentant des discontinuités. Elle est utilisée ici pour étudier un fluide incompressible régi par les équations de Navier-Stokes, dans lequel est immergée une membrane exerçant une force singulière. Nous utilisons une méthode de projection dans une grille de différences finies de type MAC. Une dérivation très complète des conditions de saut dans le cas où la viscosité est continue est présentée en annexe. Deux exemples numériques sont présentés : l'un sans membrane, et l'un où la membrane est immobile. Le cas général d'une membrane mobile est aussi étudié en profondeur.
Resumo:
En simulant l’écoulement du sang dans un réseau de capillaires (en l’absence de contrôle biologique), il est possible d’observer la présence d’oscillations de certains paramètres comme le débit volumique, la pression et l’hématocrite (volume des globules rouges par rapport au volume du sang total). Ce comportement semble être en concordance avec certaines expériences in vivo. Malgré cet accord, il faut se demander si les fluctuations observées lors des simulations de l’écoulement sont physiques, numériques ou un artefact de modèles irréalistes puisqu’il existe toujours des différences entre des modélisations et des expériences in vivo. Pour répondre à cette question de façon satisfaisante, nous étudierons et analyserons l’écoulement du sang ainsi que la nature des oscillations observées dans quelques réseaux de capillaires utilisant un modèle convectif et un modèle moyenné pour décrire les équations de conservation de masse des globules rouges. Ces modèles tiennent compte de deux effets rhéologiques importants : l’effet Fåhraeus-Lindqvist décrivant la viscosité apparente dans un vaisseau et l’effet de séparation de phase schématisant la distribution des globules rouges aux points de bifurcation. Pour décrire ce dernier effet, deux lois de séparation de phase (les lois de Pries et al. et de Fenton et al.) seront étudiées et comparées. Dans ce mémoire, nous présenterons une description du problème physiologique (rhéologie du sang). Nous montrerons les modèles mathématiques employés (moyenné et convectif) ainsi que les lois de séparation de phase (Pries et al. et Fenton et al.) accompagnés d’une analyse des schémas numériques implémentés. Pour le modèle moyenné, nous employons le schéma numérique explicite traditionnel d’Euler ainsi qu’un nouveau schéma implicite qui permet de résoudre ce problème d’une manière efficace. Ceci est fait en utilisant une méthode de Newton- Krylov avec gradient conjugué préconditionné et la méthode de GMRES pour les itérations intérieures ainsi qu’une méthode quasi-Newton (la méthode de Broyden). Cette méthode inclura le schéma implicite d’Euler et la méthode des trapèzes. Pour le schéma convectif, la méthode explicite de Kiani et al. sera implémentée ainsi qu’une nouvelle approche implicite. La stabilité des deux modèles sera également explorée. À l’aide de trois différentes topologies, nous comparerons les résultats de ces deux modèles mathématiques ainsi que les lois de séparation de phase afin de déterminer dans quelle mesure les oscillations observées peuvent être attribuables au choix des modèles mathématiques ou au choix des méthodes numériques.
Resumo:
Réalisé en majeure partie sous la tutelle de feu le Professeur Paul Arminjon. Après sa disparition, le Docteur Aziz Madrane a pris la relève de la direction de mes travaux.
Resumo:
Cette thèse, composée de quatre articles scientifiques, porte sur les méthodes numériques atomistiques et leur application à des systèmes semi-conducteurs nanostructurés. Nous introduisons les méthodes accélérées conçues pour traiter les événements activés, faisant un survol des développements du domaine. Suit notre premier article, qui traite en détail de la technique d'activation-relaxation cinétique (ART-cinétique), un algorithme Monte Carlo cinétique hors-réseau autodidacte basé sur la technique de l'activation-relaxation nouveau (ARTn), dont le développement ouvre la voie au traitement exact des interactions élastiques tout en permettant la simulation de matériaux sur des plages de temps pouvant atteindre la seconde. Ce développement algorithmique, combiné à des données expérimentales récentes, ouvre la voie au second article. On y explique le relâchement de chaleur par le silicium cristallin suite à son implantation ionique avec des ions de Si à 3 keV. Grâce à nos simulations par ART-cinétique et l'analyse de données obtenues par nanocalorimétrie, nous montrons que la relaxation est décrite par un nouveau modèle en deux temps: "réinitialiser et relaxer" ("Replenish-and-Relax"). Ce modèle, assez général, peut potentiellement expliquer la relaxation dans d'autres matériaux désordonnés. Par la suite, nous poussons l'analyse plus loin. Le troisième article offre une analyse poussée des mécanismes atomistiques responsables de la relaxation lors du recuit. Nous montrons que les interactions élastiques entre des défauts ponctuels et des petits complexes de défauts contrôlent la relaxation, en net contraste avec la littérature qui postule que des "poches amorphes" jouent ce rôle. Nous étudions aussi certains sous-aspects de la croissance de boîtes quantiques de Ge sur Si (001). En effet, après une courte mise en contexte et une introduction méthodologique supplémentaire, le quatrième article décrit la structure de la couche de mouillage lors du dépôt de Ge sur Si (001) à l'aide d'une implémentation QM/MM du code BigDFT-ART. Nous caractérisons la structure de la reconstruction 2xN de la surface et abaissons le seuil de la température nécessaire pour la diffusion du Ge en sous-couche prédit théoriquement par plus de 100 K.
Resumo:
Dans ce rapport de mémoire, nous avons utilisé les méthodes numériques telles que la dynamique moléculaire (code de Lammps) et ART-cinétique. Ce dernier est un algorithme de Monte Carlo cinétique hors réseau avec construction du catalogue d'événements à la volée qui incorpore exactement tous les effets élastiques. Dans la première partie, nous avons comparé et évalué des divers algorithmes de la recherche du minimum global sur une surface d'énergie potentielle des matériaux complexes. Ces divers algorithmes choisis sont essentiellement ceux qui utilisent le principe Bell-Evans-Polanyi pour explorer la surface d'énergie potentielle. Cette étude nous a permis de comprendre d'une part, les étapes nécessaires pour un matériau complexe d'échapper d'un minimum local vers un autre et d'autre part de contrôler les recherches pour vite trouver le minimum global. En plus, ces travaux nous ont amené à comprendre la force de ces méthodes sur la cinétique de l'évolution structurale de ces matériaux complexes. Dans la deuxième partie, nous avons mis en place un outil de simulation (le potentiel ReaxFF couplé avec ART-cinétique) capable d'étudier les étapes et les processus d'oxydation du silicium pendant des temps long comparable expérimentalement. Pour valider le système mis en place, nous avons effectué des tests sur les premières étapes d'oxydation du silicium. Les résultats obtenus sont en accord avec la littérature. Cet outil va être utilisé pour comprendre les vrais processus de l'oxydation et les transitions possibles des atomes d'oxygène à la surface du silicium associée avec les énergies de barrière, des questions qui sont des défis pour l'industrie micro-électronique.
Resumo:
There are many ways to generate geometrical models for numerical simulation, and most of them start with a segmentation step to extract the boundaries of the regions of interest. This paper presents an algorithm to generate a patient-specific three-dimensional geometric model, based on a tetrahedral mesh, without an initial extraction of contours from the volumetric data. Using the information directly available in the data, such as gray levels, we built a metric to drive a mesh adaptation process. The metric is used to specify the size and orientation of the tetrahedral elements everywhere in the mesh. Our method, which produces anisotropic meshes, gives good results with synthetic and real MRI data. The resulting model quality has been evaluated qualitatively and quantitatively by comparing it with an analytical solution and with a segmentation made by an expert. Results show that our method gives, in 90% of the cases, as good or better meshes as a similar isotropic method, based on the accuracy of the volume reconstruction for a given mesh size. Moreover, a comparison of the Hausdorff distances between adapted meshes of both methods and ground-truth volumes shows that our method decreases reconstruction errors faster. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
This paper employs the one-sector Real Business Cycle model as a testing ground for four different procedures to estimate Dynamic Stochastic General Equilibrium (DSGE) models. The procedures are: 1 ) Maximum Likelihood, with and without measurement errors and incorporating Bayesian priors, 2) Generalized Method of Moments, 3) Simulated Method of Moments, and 4) Indirect Inference. Monte Carlo analysis indicates that all procedures deliver reasonably good estimates under the null hypothesis. However, there are substantial differences in statistical and computational efficiency in the small samples currently available to estimate DSGE models. GMM and SMM appear to be more robust to misspecification than the alternative procedures. The implications of the stochastic singularity of DSGE models for each estimation method are fully discussed.
Development of new scenario decomposition techniques for linear and nonlinear stochastic programming
Resumo:
Une approche classique pour traiter les problèmes d’optimisation avec incertitude à deux- et multi-étapes est d’utiliser l’analyse par scénario. Pour ce faire, l’incertitude de certaines données du problème est modélisée par vecteurs aléatoires avec des supports finis spécifiques aux étapes. Chacune de ces réalisations représente un scénario. En utilisant des scénarios, il est possible d’étudier des versions plus simples (sous-problèmes) du problème original. Comme technique de décomposition par scénario, l’algorithme de recouvrement progressif est une des méthodes les plus populaires pour résoudre les problèmes de programmation stochastique multi-étapes. Malgré la décomposition complète par scénario, l’efficacité de la méthode du recouvrement progressif est très sensible à certains aspects pratiques, tels que le choix du paramètre de pénalisation et la manipulation du terme quadratique dans la fonction objectif du lagrangien augmenté. Pour le choix du paramètre de pénalisation, nous examinons quelques-unes des méthodes populaires, et nous proposons une nouvelle stratégie adaptive qui vise à mieux suivre le processus de l’algorithme. Des expériences numériques sur des exemples de problèmes stochastiques linéaires multi-étapes suggèrent que la plupart des techniques existantes peuvent présenter une convergence prématurée à une solution sous-optimale ou converger vers la solution optimale, mais avec un taux très lent. En revanche, la nouvelle stratégie paraît robuste et efficace. Elle a convergé vers l’optimalité dans toutes nos expériences et a été la plus rapide dans la plupart des cas. Pour la question de la manipulation du terme quadratique, nous faisons une revue des techniques existantes et nous proposons l’idée de remplacer le terme quadratique par un terme linéaire. Bien que qu’il nous reste encore à tester notre méthode, nous avons l’intuition qu’elle réduira certaines difficultés numériques et théoriques de la méthode de recouvrement progressif.
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
This paper prepared for the Handbook of Statistics (Vol.14: Statistical Methods in Finance), surveys the subject of stochastic volatility. the following subjects are covered: volatility in financial markets (instantaneous volatility of asset returns, implied volatilities in option prices and related stylized facts), statistical modelling in discrete and continuous time and, finally, statistical inference (methods of moments, quasi-maximum likelihood, likelihood-based and bayesian methods and indirect inference).
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.