10 resultados para statistical quantum field theory
em Université de Montréal, Canada
Resumo:
La théorie de l'information quantique étudie les limites fondamentales qu'imposent les lois de la physique sur les tâches de traitement de données comme la compression et la transmission de données sur un canal bruité. Cette thèse présente des techniques générales permettant de résoudre plusieurs problèmes fondamentaux de la théorie de l'information quantique dans un seul et même cadre. Le théorème central de cette thèse énonce l'existence d'un protocole permettant de transmettre des données quantiques que le receveur connaît déjà partiellement à l'aide d'une seule utilisation d'un canal quantique bruité. Ce théorème a de plus comme corollaires immédiats plusieurs théorèmes centraux de la théorie de l'information quantique. Les chapitres suivants utilisent ce théorème pour prouver l'existence de nouveaux protocoles pour deux autres types de canaux quantiques, soit les canaux de diffusion quantiques et les canaux quantiques avec information supplémentaire fournie au transmetteur. Ces protocoles traitent aussi de la transmission de données quantiques partiellement connues du receveur à l'aide d'une seule utilisation du canal, et ont comme corollaires des versions asymptotiques avec et sans intrication auxiliaire. Les versions asymptotiques avec intrication auxiliaire peuvent, dans les deux cas, être considérées comme des versions quantiques des meilleurs théorèmes de codage connus pour les versions classiques de ces problèmes. Le dernier chapitre traite d'un phénomène purement quantique appelé verrouillage: il est possible d'encoder un message classique dans un état quantique de sorte qu'en lui enlevant un sous-système de taille logarithmique par rapport à sa taille totale, on puisse s'assurer qu'aucune mesure ne puisse avoir de corrélation significative avec le message. Le message se trouve donc «verrouillé» par une clé de taille logarithmique. Cette thèse présente le premier protocole de verrouillage dont le critère de succès est que la distance trace entre la distribution jointe du message et du résultat de la mesure et le produit de leur marginales soit suffisamment petite.
Resumo:
La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel. Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment. Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique. Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ». Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique. Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive.
Resumo:
Cette thèse porte sur les phénomènes critiques survenant dans les modèles bidimensionnels sur réseau. Les résultats sont l'objet de deux articles : le premier porte sur la mesure d'exposants critiques décrivant des objets géométriques du réseau et, le second, sur la construction d'idempotents projetant sur des modules indécomposables de l'algèbre de Temperley-Lieb pour la chaîne de spins XXZ. Le premier article présente des expériences numériques Monte Carlo effectuées pour une famille de modèles de boucles en phase diluée. Baptisés "dilute loop models (DLM)", ceux-ci sont inspirés du modèle O(n) introduit par Nienhuis (1990). La famille est étiquetée par les entiers relativement premiers p et p' ainsi que par un paramètre d'anisotropie. Dans la limite thermodynamique, il est pressenti que le modèle DLM(p,p') soit décrit par une théorie logarithmique des champs conformes de charge centrale c(\kappa)=13-6(\kappa+1/\kappa), où \kappa=p/p' est lié à la fugacité du gaz de boucles \beta=-2\cos\pi/\kappa, pour toute valeur du paramètre d'anisotropie. Les mesures portent sur les exposants critiques représentant la loi d'échelle des objets géométriques suivants : l'interface, le périmètre externe et les liens rouges. L'algorithme Metropolis-Hastings employé, pour lequel nous avons introduit de nombreuses améliorations spécifiques aux modèles dilués, est détaillé. Un traitement statistique rigoureux des données permet des extrapolations coïncidant avec les prédictions théoriques à trois ou quatre chiffres significatifs, malgré des courbes d'extrapolation aux pentes abruptes. Le deuxième article porte sur la décomposition de l'espace de Hilbert \otimes^nC^2 sur lequel la chaîne XXZ de n spins 1/2 agit. La version étudiée ici (Pasquier et Saleur (1990)) est décrite par un hamiltonien H_{XXZ}(q) dépendant d'un paramètre q\in C^\times et s'exprimant comme une somme d'éléments de l'algèbre de Temperley-Lieb TL_n(q). Comme pour les modèles dilués, le spectre de la limite continue de H_{XXZ}(q) semble relié aux théories des champs conformes, le paramètre q déterminant la charge centrale. Les idempotents primitifs de End_{TL_n}\otimes^nC^2 sont obtenus, pour tout q, en termes d'éléments de l'algèbre quantique U_qsl_2 (ou d'une extension) par la dualité de Schur-Weyl quantique. Ces idempotents permettent de construire explicitement les TL_n-modules indécomposables de \otimes^nC^2. Ceux-ci sont tous irréductibles, sauf si q est une racine de l'unité. Cette exception est traitée séparément du cas où q est générique. Les problèmes résolus par ces articles nécessitent une grande variété de résultats et d'outils. Pour cette raison, la thèse comporte plusieurs chapitres préparatoires. Sa structure est la suivante. Le premier chapitre introduit certains concepts communs aux deux articles, notamment une description des phénomènes critiques et de la théorie des champs conformes. Le deuxième chapitre aborde brièvement la question des champs logarithmiques, l'évolution de Schramm-Loewner ainsi que l'algorithme de Metropolis-Hastings. Ces sujets sont nécessaires à la lecture de l'article "Geometric Exponents of Dilute Loop Models" au chapitre 3. Le quatrième chapitre présente les outils algébriques utilisés dans le deuxième article, "The idempotents of the TL_n-module \otimes^nC^2 in terms of elements of U_qsl_2", constituant le chapitre 5. La thèse conclut par un résumé des résultats importants et la proposition d'avenues de recherche qui en découlent.
Resumo:
Les algèbres de Temperley-Lieb originales, aussi dites régulières, apparaissent dans de nombreux modèles statistiques sur réseau en deux dimensions: les modèles d'Ising, de Potts, des dimères, celui de Fortuin-Kasteleyn, etc. L'espace d'Hilbert de l'hamiltonien quantique correspondant à chacun de ces modèles est un module pour cette algèbre et la théorie de ses représentations peut être utilisée afin de faciliter la décomposition de l'espace en blocs; la diagonalisation de l'hamiltonien s'en trouve alors grandement simplifiée. L'algèbre de Temperley-Lieb diluée joue un rôle similaire pour des modèles statistiques dilués, par exemple un modèle sur réseau où certains sites peuvent être vides; ses représentations peuvent alors être utilisées pour simplifier l'analyse du modèle comme pour le cas original. Or ceci requiert une connaissance des modules de cette algèbre et de leur structure; un premier article donne une liste complète des modules projectifs indécomposables de l'algèbre diluée et un second les utilise afin de construire une liste complète de tous les modules indécomposables des algèbres originale et diluée. La structure des modules est décrite en termes de facteurs de composition et par leurs groupes d'homomorphismes. Le produit de fusion sur l'algèbre de Temperley-Lieb originale permet de «multiplier» ensemble deux modules sur cette algèbre pour en obtenir un autre. Il a été montré que ce produit pouvait servir dans la diagonalisation d'hamiltoniens et, selon certaines conjectures, il pourrait également être utilisé pour étudier le comportement de modèles sur réseaux dans la limite continue. Un troisième article construit une généralisation du produit de fusion pour les algèbres diluées, puis présente une méthode pour le calculer. Le produit de fusion est alors calculé pour les classes de modules indécomposables les plus communes pour les deux familles, originale et diluée, ce qui vient ajouter à la liste incomplète des produits de fusion déjà calculés par d'autres chercheurs pour la famille originale. Finalement, il s'avère que les algèbres de Temperley-Lieb peuvent être associées à une catégorie monoïdale tressée, dont la structure est compatible avec le produit de fusion décrit ci-dessus. Le quatrième article calcule explicitement ce tressage, d'abord sur la catégorie des algèbres, puis sur la catégorie des modules sur ces algèbres. Il montre également comment ce tressage permet d'obtenir des solutions aux équations de Yang-Baxter, qui peuvent alors être utilisées afin de construire des modèles intégrables sur réseaux.
Resumo:
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.
Resumo:
Dans ce mémoire, nous nous pencherons tout particulièrement sur une primitive cryptographique connue sous le nom de partage de secret. Nous explorerons autant le domaine classique que le domaine quantique de ces primitives, couronnant notre étude par la présentation d’un nouveau protocole de partage de secret quantique nécessitant un nombre minimal de parts quantiques c.-à-d. une seule part quantique par participant. L’ouverture de notre étude se fera par la présentation dans le chapitre préliminaire d’un survol des notions mathématiques sous-jacentes à la théorie de l’information quantique ayant pour but primaire d’établir la notation utilisée dans ce manuscrit, ainsi que la présentation d’un précis des propriétés mathématique de l’état de Greenberger-Horne-Zeilinger (GHZ) fréquemment utilisé dans les domaines quantiques de la cryptographie et des jeux de la communication. Mais, comme nous l’avons mentionné plus haut, c’est le domaine cryptographique qui restera le point focal de cette étude. Dans le second chapitre, nous nous intéresserons à la théorie des codes correcteurs d’erreurs classiques et quantiques qui seront à leur tour d’extrême importances lors de l’introduction de la théorie quantique du partage de secret dans le chapitre suivant. Dans la première partie du troisième chapitre, nous nous concentrerons sur le domaine classique du partage de secret en présentant un cadre théorique général portant sur la construction de ces primitives illustrant tout au long les concepts introduits par des exemples présentés pour leurs intérêts autant historiques que pédagogiques. Ceci préparera le chemin pour notre exposé sur la théorie quantique du partage de secret qui sera le focus de la seconde partie de ce même chapitre. Nous présenterons alors les théorèmes et définitions les plus généraux connus à date portant sur la construction de ces primitives en portant un intérêt particulier au partage quantique à seuil. Nous montrerons le lien étroit entre la théorie quantique des codes correcteurs d’erreurs et celle du partage de secret. Ce lien est si étroit que l’on considère les codes correcteurs d’erreurs quantiques étaient de plus proches analogues aux partages de secrets quantiques que ne leur étaient les codes de partage de secrets classiques. Finalement, nous présenterons un de nos trois résultats parus dans A. Broadbent, P.-R. Chouha, A. Tapp (2009); un protocole sécuritaire et minimal de partage de secret quantique a seuil (les deux autres résultats dont nous traiterons pas ici portent sur la complexité de la communication et sur la simulation classique de l’état de GHZ).
Resumo:
À travers cette thèse, nous revisitons les différentes étapes qui ont conduit à la découverte des isolants topologiques, suite à quoi nous nous penchons sur la question à savoir si une phase topologiquement non-triviale peut coexister avec un état de symétrie brisée. Nous abordons les concepts les plus importants dans la description de ce nouvel état de la matière, et tentons de comprendre les conséquences fascinantes qui en découlent. Il s’agit d’un champ de recherche fortement alimenté par la théorie, ainsi, l’étude du cadre théorique est nécessaire pour atteindre une compréhension profonde du sujet. Le chapitre 1 comprend un retour sur l’effet de Hall quantique, afin de motiver les sections subséquentes. Le chapitre 2 présente la première réalisation d’un isolant topologique à deux dimensions dans un puits quantique de HgTe/CdTe, suite à quoi ces résultats sont généralisés à trois dimensions. Nous verrons ensuite comment incorporer des principes de topologie dans la caractérisation d’un système spécifique, à l’aide d’invariants topologiques. Le chapitre 3 introduit le premier dérivé de l’état isolant topologique, soit l’isolant topologique antiferromagnétique (ITAF). Après avoir motivé théoriquement le sujet et introduit un invariant propre à ce nouvel état ITAF, qui est couplé à l’ordre de Néel, nous explorons, dans les chapitres 4 et 5, deux candidats de choix pour la phase ITAF : GdBiPt et NdBiPt.
Resumo:
Ancrée dans le domaine de la didactique des mathématiques, notre thèse cible le « travail de l’erreur » effectué par trois enseignants dans leur première année de carrière. Libérés des contraintes associées au système de formation initiale, ces sujets assument pleinement leur nouveau rôle au sein de la classe ordinaire. Ils se chargent, entre autres, de l’enseignement de l’arithmétique et, plus précisément, de la division euclidienne. Parmi leurs responsabilités se trouvent le repérage et l’intervention sur les procédures erronées. Le « travail de l’erreur » constitue l’expression spécifique désignant cette double tâche (Portugais 1995). À partir d’un dispositif de recherche combinant les méthodes d’observation et d’entrevue, nous documentons des séances d’enseignement afin de dégager les situations où nos maîtres du primaire identifient des erreurs dans les procédures algorithmiques des élèves et déploient, subséquemment, des stratégies d’intervention. Nous montrons comment ces deux activités sont coordonnées en décrivant les choix, décisions et actions mises en œuvre par nos sujets. Il nous est alors possible d’exposer l’organisation de la conduite de ces jeunes enseignants en fonction du traitement effectif de l’erreur arithmétique. En prenant appui sur la théorie de champs conceptuels (Vergnaud 1991), nous révélons l’implicite des connaissances mobilisées par nos sujets et mettons en relief les mécanismes cognitifs qui sous-tendent cette activité professionnelle. Nous pouvons ainsi témoigner, du moins en partie, du travail de conceptualisation réalisé in situ. Ce travail analytique permet de proposer l’existence d’un schème du travail de l’erreur chez ces maîtres débutants, mais aussi de spécifier sa nature et son fonctionnement. En explorant le versant cognitif de l’activité enseignante, notre thèse aborde une nouvelle perspective associée au thème du repérage et de l’intervention sur l’erreur de calcul de divisions en colonne.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
En 2012, la traduction au Québec d'ouvrages littéraires d'auteurs issus de l'Amérique hispanique est encore un phénomène marginal. Pourtant, les entreprises de traduction de tels ouvrages se sont faites plus nombreuses au cours des vingt dernières années, et deux maisons d'édition québécoises leur ont fait la part belle : Les Écrits des Forges et Les Allusifs. La première a publié en français de nombreux canons de la poésie mexicaine tandis que la seconde possède à son catalogue (maintenant chez Leméac) bon nombre d'auteurs hispano-américains. Les efforts de ces éditeurs ont été précédés d'un premier mouvement d'accueil de la littérature hispano-américaine, mouvement principalement lié à la venue au Canada d'auteurs hispano-américains immigrants, souvent des réfugiés qui avaient fui la guerre ou la dictature dans leur pays d'origine. À partir de la théorie des champs de Pierre Bourdieu et de l’application de cette théorie à l’espace littéraire international par Pascale Casanova, ce mémoire cherche à expliquer plus en détail les conditions et logiques qui sous-tendent la traduction et l’édition des littératures hispano-américaines au Québec. Pour ce faire, il analyse la trajectoire de trois auteurs dont chacun a vu au moins un de ses titres publié en français. Ces auteurs sont le Salvadorien Horacio Castellanos Moya, dont le roman intitulé Le Dégoût a été publié aux Allusifs en 2003, le Mexicain Jaime Sabines, dont Poemas del peatón/Poèmes du piéton a été publié aux Écrits des Forges en 1997, et la Colombienne québécoise Yvonne América Truque, dont le recueil de poèmes Proyección de los silencios/Projection des silences a été publié au CÉDAH en 1986. Chacune des trajectoires illustre un modèle de production et de diffusion particulier de la littérature hispano-américaine en traduction qui s’est manifesté durant les vingt dernières années. Ensemble, elles permettent de dégager le parcours évolutif de l’édition vers une intégration de plus en plus mondialisée des mécanismes de diffusion des biens symboliques.