2 resultados para special groups
em Université de Montréal, Canada
Resumo:
Cette thèse s'intéresse à l'étude des propriétés et applications de quatre familles des fonctions spéciales associées aux groupes de Weyl et dénotées $C$, $S$, $S^s$ et $S^l$. Ces fonctions peuvent être vues comme des généralisations des polynômes de Tchebyshev. Elles sont en lien avec des polynômes orthogonaux à plusieurs variables associés aux algèbres de Lie simples, par exemple les polynômes de Jacobi et de Macdonald. Elles ont plusieurs propriétés remarquables, dont l'orthogonalité continue et discrète. En particulier, il est prouvé dans la présente thèse que les fonctions $S^s$ et $S^l$ caractérisées par certains paramètres sont mutuellement orthogonales par rapport à une mesure discrète. Leur orthogonalité discrète permet de déduire deux types de transformées discrètes analogues aux transformées de Fourier pour chaque algèbre de Lie simple avec racines des longueurs différentes. Comme les polynômes de Tchebyshev, ces quatre familles des fonctions ont des applications en analyse numérique. On obtient dans cette thèse quelques formules de <
Resumo:
Plusieurs familles de fonctions spéciales de plusieurs variables, appelées fonctions d'orbites, sont définies dans le contexte des groupes de Weyl de groupes de Lie simples compacts/d'algèbres de Lie simples. Ces fonctions sont étudiées depuis près d'un siècle en raison de leur lien avec les caractères des représentations irréductibles des algèbres de Lie simples, mais également de par leurs symétries et orthogonalités. Nous sommes principalement intéressés par la description des relations d'orthogonalité discrète et des transformations discrètes correspondantes, transformations qui permettent l'utilisation des fonctions d'orbites dans le traitement de données multidimensionnelles. Cette description est donnée pour les groupes de Weyl dont les racines ont deux longueurs différentes, en particulier pour les groupes de rang $2$ dans le cas des fonctions d'orbites du type $E$ et pour les groupes de rang $3$ dans le cas de toutes les autres fonctions d'orbites.