4 resultados para shape and surface modeling

em Université de Montréal, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

L’une des particularités fondamentales caractérisant les cellules végétales des cellules animales est la présence de la paroi cellulaire entourant le protoplaste. La paroi cellulaire joue un rôle primordial dans (1) la protection du protoplaste, (2) est impliquée dans les mécanismes de filtration et (3) est le lieu de maintes réactions biochimiques nécessaires à la régulation du métabolisme et des propriétés mécaniques de la cellule. Les propriétés locales d’élasticité, d’extensibilité, de plasticité et de dureté des composants pariétaux déterminent la géométrie et la forme des cellules lors des processus de différentiation et de morphogenèse. Le but de ma thèse est de comprendre les rôles que jouent les différents composants pariétaux dans le modelage de la géométrie et le contrôle de la croissance des cellules végétales. Pour atteindre cet objectif, le modèle cellulaire sur lequel je me suis basé est le tube pollinique ou gamétophyte mâle. Le tube pollinique est une protubérance cellulaire qui se forme à partir du grain de pollen à la suite de son contact avec le stigmate. Sa fonction est la livraison des cellules spermatiques à l’ovaire pour effectuer la double fécondation. Le tube pollinique est une cellule à croissance apicale, caractérisée par la simple composition de sa paroi et par sa vitesse de croissance qui est la plus rapide du règne végétal. Ces propriétés uniques font du tube pollinique le modèle idéal pour l’étude des effets à courts termes du stress sur la croissance et le métabolisme cellulaire ainsi que sur les propriétés mécaniques de la paroi. La paroi du tube pollinique est composée de trois composantes polysaccharidiques : pectines, cellulose et callose et d’une multitude de protéines. Pour comprendre les effets que jouent ces différents composants dans la régulation de la croissance du tube pollinique, j’ai étudié les effets de mutations, de traitements enzymatiques, de l’hyper-gravité et de la gravité omni-directionnelle sur la paroi du tube pollinique. En utilisant des méthodes de modélisation mathématiques combinées à de la biologie moléculaire et de la microscopie à fluorescence et électronique à haute résolution, j’ai montré que (1) la régulation de la chimie des pectines est primordiale pour le contrôle du taux de croissance et de la forme du tube et que (2) la cellulose détermine le diamètre du tube pollinique en partie sub-apicale. De plus, j’ai examiné le rôle d’un groupe d’enzymes digestives de pectines exprimées durant le développement du tube pollinique : les pectate lyases. J’ai montré que ces enzymes sont requises lors de l’initiation de la germination du pollen. J’ai notamment directement prouvé que les pectate lyases sont sécrétées par le tube pollinique dans le but de faciliter sa pénétration au travers du style.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Affiliation: Institut de recherche en immunologie et en cancérologie, Université de Montréal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le réalisme des images en infographie exige de créer des objets (ou des scènes) de plus en plus complexes, ce qui entraîne des coûts considérables. La modélisation procédurale peut aider à automatiser le processus de création, à simplifier le processus de modification ou à générer de multiples variantes d'une instance d'objet. Cependant même si plusieurs méthodes procédurales existent, aucune méthode unique permet de créer tous les types d'objets complexes, dont en particulier un édifice complet. Les travaux réalisés dans le cadre de cette thèse proposent deux solutions au problème de la modélisation procédurale: une solution au niveau de la géométrie de base, et l’autre sous forme d'un système général adapté à la modélisation des objets complexes. Premièrement, nous présentons le bloc, une nouvelle primitive de modélisation simple et générale, basée sur une forme cubique généralisée. Les blocs sont disposés et connectés entre eux pour constituer la forme de base des objets, à partir de laquelle est extrait un maillage de contrôle pouvant produire des arêtes lisses et vives. La nature volumétrique des blocs permet une spécification simple de la topologie, ainsi que le support des opérations de CSG entre les blocs. La paramétrisation de la surface, héritée des faces des blocs, fournit un soutien pour les textures et les fonctions de déplacements afin d'appliquer des détails de surface. Une variété d'exemples illustrent la généralité des blocs dans des contextes de modélisation à la fois interactive et procédurale. Deuxièmement, nous présentons un nouveau système de modélisation procédurale qui unifie diverses techniques dans un cadre commun. Notre système repose sur le concept de composants pour définir spatialement et sémantiquement divers éléments. À travers une série de déclarations successives exécutées sur un sous-ensemble de composants obtenus à l'aide de requêtes, nous créons un arbre de composants définissant ultimement un objet dont la géométrie est générée à l'aide des blocs. Nous avons appliqué notre concept de modélisation par composants à la génération d'édifices complets, avec intérieurs et extérieurs cohérents. Ce nouveau système s'avère général et bien adapté pour le partionnement des espaces, l'insertion d'ouvertures (portes et fenêtres), l'intégration d'escaliers, la décoration de façades et de murs, l'agencement de meubles, et diverses autres opérations nécessaires lors de la construction d'un édifice complet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.