4 resultados para sequential reduction processes
em Université de Montréal, Canada
Resumo:
Les rétinopathies ischémiques (RI) sont la cause majeure de cécité chez les personnes âgées de moins de 65 ans. Il existe deux types de RIs soit la rétinopathie du prématuré (ROP) ainsi que la rétinopathie diabétique (RD). Les RIs sont décrites en deux phases soit la phase de vasooblitération, marquée par une perte importante de vaisseaux sanguins, et une phase de néovascularisation secondaire à lʼischémie menant à une croissance pathologique de vaisseaux. Cette seconde phase peut générer des complications cliniques telles quʼun oedème dans lʼhumeur vitré ainsi que le détachement de la rétine chez les patients déjà atteints dʼune RI. Les traitements approuvés pour les RIs visent à réduire la formation des vaisseaux pathologiques ou lʼoedème; mais ceux-ci malheureusement ne règlent pas les problèmes sous-jacents tels que la perte vasculaire et lʼischémie. La rétine est un tissu hautement vascularisé qui contribue à lʼirrigation et à lʼhoméostasie des neurones. Lʼinteraction neurovasculaire, comprenant de neurones, vaisseaux et cellules gliales, contribue au maintien de cette homéostasie. Durant le développement, les neurones et les cellules gliales jouent un rôle important dans la vascularisation de la rétine en sécrétant des facteurs qui stimulent l'angiogenèse. Cependant, nos connaissances sur lʼinteraction neurovasculaire dans les RIs sont limitées. En identifiant les interactions importantes entre les cellules composant cette unité neurovasculaire dans la rétine, nous pourrons viser des cibles qui engendreront une revascularisation seine afin de diminuer les signes pathologiques chez les patients atteints dʼune RI. Les travaux présentés dans cette thèse visent à mieux expliquer cette interaction neurovasculaire en soulignant des concepts importants propres aux RIs. En utilisant un modèle de rétinopathie induite par lʼoxygène chez la souris, qui reproduit les caractéristiques importantes de la ROP (et en certaines instances, la RD), nous identifions quelques molécules clés jouant un rôle significatif dans les RIs soit la sémaphorine 3A (sema3A), lʼIL-1β, ainsi que le récepteur PAR2. Nos résultats démontrent que Sema3A, sécrétée par les cellules ganglionnaires rétiniennes (CGRs) durant une ischémie, empêche la revascularisation normale et que cette expression est induite par lʼIL-1β provenant des microglies activées. En bloquant Sema3A directement ou via lʼinhibition de lʼIL- 1β, nous remarquons une revascularisation seine ainsi quʼune diminution importante des vaisseaux pathologiques. Cela nous indique que Sema3A est impliquée dans la guidance vasculaire et quʼelle contribue à la pathogenèse des RIs. Lʼactivation de façon exogène de PAR2, identifié aussi comme régulateur du récepteur de lʼIL-1β (IL- 1RI) sur les CGRs, se traduit par une diminution séquentielle de lʼIL-1RI et de Sema3A ce qui mène également à une revascularisation seine. En conclusion, ces travaux soulignent lʼimportance de lʼinteraction neurovasculaire ainsi que la guidance vasculaire dans les RIs. Ils renforcent lʼimportance de la communication entre neurone, vaisseau et microglie dans la pathogenèse des RIs. Finalement, nous identifions quelques molécules clés qui pourront servir comme cibles afin de lutter contre lʼischémie qui cause des problèmes vasculaires chez les patients atteints dʼune RI.
Resumo:
This paper proposes an explanation for why efficient reforms are not carried out when losers have the power to block their implementation, even though compensating them is feasible. We construct a signaling model with two-sided incomplete information in which a government faces the task of sequentially implementing two reforms by bargaining with interest groups. The organization of interest groups is endogenous. Compensations are distortionary and government types differ in the concern about distortions. We show that, when compensations are allowed to be informative about the government’s type, there is a bias against the payment of compensations and the implementation of reforms. This is because paying high compensations today provides incentives for some interest groups to organize and oppose subsequent reforms with the only purpose of receiving a transfer. By paying lower compensations, governments attempt to prevent such interest groups from organizing. However, this comes at the cost of reforms being blocked by interest groups with relatively high losses.
Resumo:
Cette thèse envisage un ensemble de méthodes permettant aux algorithmes d'apprentissage statistique de mieux traiter la nature séquentielle des problèmes de gestion de portefeuilles financiers. Nous débutons par une considération du problème général de la composition d'algorithmes d'apprentissage devant gérer des tâches séquentielles, en particulier celui de la mise-à-jour efficace des ensembles d'apprentissage dans un cadre de validation séquentielle. Nous énumérons les desiderata que des primitives de composition doivent satisfaire, et faisons ressortir la difficulté de les atteindre de façon rigoureuse et efficace. Nous poursuivons en présentant un ensemble d'algorithmes qui atteignent ces objectifs et présentons une étude de cas d'un système complexe de prise de décision financière utilisant ces techniques. Nous décrivons ensuite une méthode générale permettant de transformer un problème de décision séquentielle non-Markovien en un problème d'apprentissage supervisé en employant un algorithme de recherche basé sur les K meilleurs chemins. Nous traitons d'une application en gestion de portefeuille où nous entraînons un algorithme d'apprentissage à optimiser directement un ratio de Sharpe (ou autre critère non-additif incorporant une aversion au risque). Nous illustrons l'approche par une étude expérimentale approfondie, proposant une architecture de réseaux de neurones spécialisée à la gestion de portefeuille et la comparant à plusieurs alternatives. Finalement, nous introduisons une représentation fonctionnelle de séries chronologiques permettant à des prévisions d'être effectuées sur un horizon variable, tout en utilisant un ensemble informationnel révélé de manière progressive. L'approche est basée sur l'utilisation des processus Gaussiens, lesquels fournissent une matrice de covariance complète entre tous les points pour lesquels une prévision est demandée. Cette information est utilisée à bon escient par un algorithme qui transige activement des écarts de cours (price spreads) entre des contrats à terme sur commodités. L'approche proposée produit, hors échantillon, un rendement ajusté pour le risque significatif, après frais de transactions, sur un portefeuille de 30 actifs.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.