3 resultados para semi-implicit scheme
em Université de Montréal, Canada
Resumo:
Cette thèse est divisée en trois chapitres. Le premier explique comment utiliser la méthode «level-set» de manière rigoureuse pour faire la simulation de feux de forêt en utilisant comme modèle physique pour la propagation le modèle de l'ellipse de Richards. Le second présente un nouveau schéma semi-implicite avec une preuve de convergence pour la solution d'une équation de type Hamilton-Jacobi anisotrope. L'avantage principal de cette méthode est qu'elle permet de réutiliser des solutions à des problèmes «proches» pour accélérer le calcul. Une autre application de ce schéma est l'homogénéisation. Le troisième chapitre montre comment utiliser les méthodes numériques des deux premiers chapitres pour étudier l'influence de variations à petites échelles dans la vitesse du vent sur la propagation d'un feu de forêt à l'aide de la théorie de l'homogénéisation.
Resumo:
En simulant l’écoulement du sang dans un réseau de capillaires (en l’absence de contrôle biologique), il est possible d’observer la présence d’oscillations de certains paramètres comme le débit volumique, la pression et l’hématocrite (volume des globules rouges par rapport au volume du sang total). Ce comportement semble être en concordance avec certaines expériences in vivo. Malgré cet accord, il faut se demander si les fluctuations observées lors des simulations de l’écoulement sont physiques, numériques ou un artefact de modèles irréalistes puisqu’il existe toujours des différences entre des modélisations et des expériences in vivo. Pour répondre à cette question de façon satisfaisante, nous étudierons et analyserons l’écoulement du sang ainsi que la nature des oscillations observées dans quelques réseaux de capillaires utilisant un modèle convectif et un modèle moyenné pour décrire les équations de conservation de masse des globules rouges. Ces modèles tiennent compte de deux effets rhéologiques importants : l’effet Fåhraeus-Lindqvist décrivant la viscosité apparente dans un vaisseau et l’effet de séparation de phase schématisant la distribution des globules rouges aux points de bifurcation. Pour décrire ce dernier effet, deux lois de séparation de phase (les lois de Pries et al. et de Fenton et al.) seront étudiées et comparées. Dans ce mémoire, nous présenterons une description du problème physiologique (rhéologie du sang). Nous montrerons les modèles mathématiques employés (moyenné et convectif) ainsi que les lois de séparation de phase (Pries et al. et Fenton et al.) accompagnés d’une analyse des schémas numériques implémentés. Pour le modèle moyenné, nous employons le schéma numérique explicite traditionnel d’Euler ainsi qu’un nouveau schéma implicite qui permet de résoudre ce problème d’une manière efficace. Ceci est fait en utilisant une méthode de Newton- Krylov avec gradient conjugué préconditionné et la méthode de GMRES pour les itérations intérieures ainsi qu’une méthode quasi-Newton (la méthode de Broyden). Cette méthode inclura le schéma implicite d’Euler et la méthode des trapèzes. Pour le schéma convectif, la méthode explicite de Kiani et al. sera implémentée ainsi qu’une nouvelle approche implicite. La stabilité des deux modèles sera également explorée. À l’aide de trois différentes topologies, nous comparerons les résultats de ces deux modèles mathématiques ainsi que les lois de séparation de phase afin de déterminer dans quelle mesure les oscillations observées peuvent être attribuables au choix des modèles mathématiques ou au choix des méthodes numériques.
Resumo:
Cette thèse s’intéresse à la modélisation magnétohydrodynamique des écoulements de fluides conducteurs d’électricité multi-échelles en mettant l’emphase sur deux applications particulières de la physique solaire: la modélisation des mécanismes des variations de l’irradiance via la simulation de la dynamo globale et la reconnexion magnétique. Les variations de l’irradiance sur les périodes des jours, des mois et du cycle solaire de 11 ans sont très bien expliquées par le passage des régions actives à la surface du Soleil. Cependant, l’origine ultime des variations se déroulant sur les périodes décadales et multi-décadales demeure un sujet controversé. En particulier, une certaine école de pensée affirme qu’une partie de ces variations à long-terme doit provenir d’une modulation de la structure thermodynamique globale de l’étoile, et que les seuls effets de surface sont incapables d’expliquer la totalité des fluctuations. Nous présentons une simulation globale de la convection solaire produisant un cycle magnétique similaire en plusieurs aspects à celui du Soleil, dans laquelle le flux thermique convectif varie en phase avec l’ ́energie magnétique. La corrélation positive entre le flux convectif et l’énergie magnétique supporte donc l’idée qu’une modulation de la structure thermodynamique puisse contribuer aux variations à long-terme de l’irradiance. Nous analysons cette simulation dans le but d’identifier le mécanisme physique responsable de la corrélation en question et pour prédire de potentiels effets observationnels résultant de la modulation structurelle. La reconnexion magnétique est au coeur du mécanisme de plusieurs phénomènes de la physique solaire dont les éruptions et les éjections de masse, et pourrait expliquer les températures extrêmes caractérisant la couronne. Une correction aux trajectoires du schéma semi-Lagrangien classique est présentée, qui est basée sur la solution à une équation aux dérivées partielles nonlinéaire du second ordre: l’équation de Monge-Ampère. Celle-ci prévient l’intersection des trajectoires et assure la stabilité numérique des simulations de reconnexion magnétique pour un cas de magnéto-fluide relaxant vers un état d’équilibre.