7 resultados para resting-state networks
em Université de Montréal, Canada
Resumo:
La méditation par le ‘mindfulness’ favorise la stabilité émotionelle, mais les mécanismes neuroneux qui sous-tendent ces effets sont peu connus. Ce projet investiga l’effet du ‘mindfulness’ sur les réponses cérébrales et subjectives à des images négatives, positives et neutres chez des méditants expérimentés et des débutants au moyen de l’imagerie par résonance magnétique fonctionnelle (IRMf). Le ‘mindfulness’ atténua l’intensité émotionelle via différents mécanismes cérébraux pour chaque groupe. Comparés aux méditants, les débutants manifestèrent une déactivation de l’amygdale en réponse aux stimuli émotifs durant le ‘mindfulness’. Comparés aux débutants, les méditants exhibèrent une déactivation de régions du réseau du mode par défaut (RMD) pendant le ‘mindfulness’ pour tous stimuli (cortex médian préfrontal [CMP], cortex cingulaire postérieur [CCP]). Le RMD est constitué de régions fonctionnellement connectées, activées au repos et déactivées lors de tâches explicites. Cependant, nous ne connaissons pas les impacts de l’entraînement par la méditation sur la connectivité entre régions du RMD et si ces effets persistent au-delà d’un état méditatif. La connectivité fonctionnelle entre régions du RMD chez les méditants et débutants au repos fut investiguée au moyen de l’IRMf. Comparés aux débutants, les méditants montrèrent une connectivité affaiblie entre subdivisions du CMP, et une connectivité accrue entre le lobule pariétal inférieur et trois regions du RMD. Ces résultats reflètent que les bienfaits immédiats du ‘mindfulness’ sur la psychopathologie pourraient être dûs à une déactivation de régions limbiques impliquées dans la réactivité émotionelle. De plus, les bienfaits à long-terme de la méditation sur la stabilité émotionelle pourrait être dûs à une déactivation de régions corticales et cingulaires impliquées dans l’évaluation de la signification émotive et une connectivité altérée entre régions du RMD à l’état de repos.
Resumo:
Les fichiers sons qui accompagne mon document sont au format midi. Le programme que nous avons développés pour ce travail est en language Python.
Resumo:
Les canaux potassiques voltage-dépendants forment des tétramères dont chaque sous-unité comporte six segments transmembranaires (S1 à S6). Le pore, formé des segments S5-S6 de chaque sous-unité, est entouré de quatre domaines responsables de la sensibilité au potentiel membranaire, les senseurs de voltage (VS; S1-S4). Lors d’une dépolarisation membranaire, le mouvement des résidus chargés situés dans le VS entraine un mouvement de charges détectable en électrophysiologie, le courant de « gating ». L’activation du VS conduit à l'ouverture du pore, qui se traduit par un changement de conformation en C-terminal du segment S6. Pour élucider les principes qui sous-tendent le couplage électromécanique entre ces deux domaines, nous avons étudié deux régions présumées responsables du couplage chez les canaux de type Shaker K+, soit la région carboxy-terminale du segment S6 et le lien peptidique reliant les segments transmembranaire S4-S5 (S4-5L). Avec la technique du « cut-open voltage clamp fluorometry » (COVCF), nous avons pu déterminer que l’interaction inter-sous-unitaire RELY, formée par des acides aminés situés sur le lien S4-5L et S6 de deux sous-unités voisines, est impliquée dans le développement de la composante lente observée lors du retour des charges de « gating » vers leur état de repos, le « OFF-gating ». Nous avons observé que l’introduction de mutations dans la région RELY module la force de ces interactions moléculaires et élimine l’asymétrie observée dans les courants de « gating » de type sauvage. D’ailleurs, nous démontrons que ce couplage inter-sous-unitaire est responsable de la stabilisation du pore dans l’état ouvert. Nous avons également identifié une interaction intra-sous-unitaire entre les résidus I384 situé sur le lien S4-5L et F484 sur le segment S6 d’une même sous-unité. La déstabilisation de cette interaction hydrophobique découple complètement le mouvement des senseurs de voltage et l'ouverture du pore. Sans cette interaction, l’énergie nécessaire pour activer les VS est moindre en raison de l’absence du poids mécanique appliqué par le pore. De plus, l’abolition du couplage électromécanique élimine également le « mode shift », soit le déplacement de la dépendance au voltage des charges de transfert (QV) vers des potentiels hyperpolarisants. Ceci indique que le poids mécanique du pore imposé au VS entraine le « mode shift », en modulant la conformation intrinsèque du VS par un processus allostérique.
Resumo:
Purpose: There are few studies demonstrating the link between neural oscillations in magnetoencephalography (MEG) at rest and cognitive performance. Working memory is one of the most studied cognitive processes and is the ability to manipulate information on items kept in short-term memory. Heister & al. (2013) showed correlation patterns between brain oscillations at rest in MEG and performance in a working memory task (n-back). These authors showed that delta/theta activity in fronto-parietal areas is related to working memory performance. In this study, we use resting state MEG oscillations to validate these correlations with both of verbal (VWM) and spatial (SWM) working memory, and test their specificity in comparison with other cognitive abilities. Methods: We recorded resting state MEG and used clinical neuropsychological tests to assess working memory performance in 18 volunteers (6 males and 12 females). The other neuropsychological tests of the WAIS-IV were used as control tests to assess the specificity of the correlation patterns with working memory. We calculated means of Power Spectrum Density for different frequency bands (delta, 1-4Hz; theta, 4-8Hz; alpha, 8-13Hz; beta, 13-30Hz; gamma1, 30-59Hz; gamma2, 61-90Hz; gamma3, 90-120Hz; large gamma, 30-120Hz) and correlated MEG power normalised for the maximum in each frequency band at the sensor level with working memory performance. We then grouped the sensors showing a significant correlation by using a cluster algorithm. Results: We found positive correlations between both types of working memory performance and clusters in the bilateral posterior and right fronto-temporal regions for the delta band (r2 =0.73), in the fronto-middle line and right temporal regions for the theta band (r2 =0.63) as well as in the parietal regions for the alpha band (r2 =0.78). Verbal working memory and spatial working memory share a common fronto-parietal cluster of sensors but also show specific clusters. These clusters are specific to working memory, as compared to those obtained for other cognitive abilities and right posterior parietal areas, specially in slow frequencies, appear to be specific to working memory process. Conclusions: Slow frequencies (1-13Hz) but more precisely in delta/theta bands (1-8Hz), recorded at rest with magnetoencephalography, predict working memory performance and support the role of a fronto-parietal network in working memory.
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.
Resumo:
Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.