20 resultados para regression discrete models

em Université de Montréal, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the context of multivariate linear regression (MLR) models, it is well known that commonly employed asymptotic test criteria are seriously biased towards overrejection. In this paper, we propose a general method for constructing exact tests of possibly nonlinear hypotheses on the coefficients of MLR systems. For the case of uniform linear hypotheses, we present exact distributional invariance results concerning several standard test criteria. These include Wilks' likelihood ratio (LR) criterion as well as trace and maximum root criteria. The normality assumption is not necessary for most of the results to hold. Implications for inference are two-fold. First, invariance to nuisance parameters entails that the technique of Monte Carlo tests can be applied on all these statistics to obtain exact tests of uniform linear hypotheses. Second, the invariance property of the latter statistic is exploited to derive general nuisance-parameter-free bounds on the distribution of the LR statistic for arbitrary hypotheses. Even though it may be difficult to compute these bounds analytically, they can easily be simulated, hence yielding exact bounds Monte Carlo tests. Illustrative simulation experiments show that the bounds are sufficiently tight to provide conclusive results with a high probability. Our findings illustrate the value of the bounds as a tool to be used in conjunction with more traditional simulation-based test methods (e.g., the parametric bootstrap) which may be applied when the bounds are not conclusive.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objectif: Évaluer l'efficacité du dépistage de l’hypertension gestationnelle par les caractéristiques démographiques maternelles, les biomarqueurs sériques et le Doppler de l'artère utérine au premier et au deuxième trimestre de grossesse. Élaborer des modèles prédictifs de l’hypertension gestationnelle fondées sur ces paramètres. Methods: Il s'agit d'une étude prospective de cohorte incluant 598 femmes nullipares. Le Doppler utérin a été étudié par échographie transabdominale entre 11 +0 à 13 +6 semaines (1er trimestre) et entre 17 +0 à 21 +6 semaines (2e trimestre). Tous les échantillons de sérum pour la mesure de plusieurs biomarqueurs placentaires ont été recueillis au 1er trimestre. Les caractéristiques démographiques maternelles ont été enregistrées en même temps. Des courbes ROC et les valeurs prédictives ont été utilisés pour analyser la puissance prédictive des paramètres ci-dessus. Différentes combinaisons et leurs modèles de régression logistique ont été également analysés. Résultats: Parmi 598 femmes, on a observé 20 pré-éclampsies (3,3%), 7 pré-éclampsies précoces (1,2%), 52 cas d’hypertension gestationnelle (8,7%) , 10 cas d’hypertension gestationnelle avant 37 semaines (1,7%). L’index de pulsatilité des artères utérines au 2e trimestre est le meilleur prédicteur. En analyse de régression logistique multivariée, la meilleure valeur prédictive au 1er et au 2e trimestre a été obtenue pour la prévision de la pré-éclampsie précoce. Le dépistage combiné a montré des résultats nettement meilleurs comparés avec les paramètres maternels ou Doppler seuls. Conclusion: Comme seul marqueur, le Doppler utérin du deuxième trimestre a la meilleure prédictive pour l'hypertension, la naissance prématurée et la restriction de croissance. La combinaison des caractéristiques démographiques maternelles, des biomarqueurs sériques maternels et du Doppler utérin améliore l'efficacité du dépistage, en particulier pour la pré-éclampsie nécessitant un accouchement prématuré.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé. Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dans cette thèse, je me suis interessé à l’identification partielle des effets de traitements dans différents modèles de choix discrets avec traitements endogènes. Les modèles d’effets de traitement ont pour but de mesurer l’impact de certaines interventions sur certaines variables d’intérêt. Le type de traitement et la variable d’intérêt peuvent être défini de manière générale afin de pouvoir être appliqué à plusieurs différents contextes. Il y a plusieurs exemples de traitement en économie du travail, de la santé, de l’éducation, ou en organisation industrielle telle que les programmes de formation à l’emploi, les techniques médicales, l’investissement en recherche et développement, ou l’appartenance à un syndicat. La décision d’être traité ou pas n’est généralement pas aléatoire mais est basée sur des choix et des préférences individuelles. Dans un tel contexte, mesurer l’effet du traitement devient problématique car il faut tenir compte du biais de sélection. Plusieurs versions paramétriques de ces modèles ont été largement étudiées dans la littérature, cependant dans les modèles à variation discrète, la paramétrisation est une source importante d’identification. Dans un tel contexte, il est donc difficile de savoir si les résultats empiriques obtenus sont guidés par les données ou par la paramétrisation imposée au modèle. Etant donné, que les formes paramétriques proposées pour ces types de modèles n’ont généralement pas de fondement économique, je propose dans cette thèse de regarder la version nonparamétrique de ces modèles. Ceci permettra donc de proposer des politiques économiques plus robustes. La principale difficulté dans l’identification nonparamétrique de fonctions structurelles, est le fait que la structure suggérée ne permet pas d’identifier un unique processus générateur des données et ceci peut être du soit à la présence d’équilibres multiples ou soit à des contraintes sur les observables. Dans de telles situations, les méthodes d’identifications traditionnelles deviennent inapplicable d’où le récent développement de la littérature sur l’identification dans les modèles incomplets. Cette littérature porte une attention particuliere à l’identification de l’ensemble des fonctions structurelles d’intérêt qui sont compatibles avec la vraie distribution des données, cet ensemble est appelé : l’ensemble identifié. Par conséquent, dans le premier chapitre de la thèse, je caractérise l’ensemble identifié pour les effets de traitements dans le modèle triangulaire binaire. Dans le second chapitre, je considère le modèle de Roy discret. Je caractérise l’ensemble identifié pour les effets de traitements dans un modèle de choix de secteur lorsque la variable d’intérêt est discrète. Les hypothèses de sélection du secteur comprennent le choix de sélection simple, étendu et généralisé de Roy. Dans le dernier chapitre, je considère un modèle à variable dépendante binaire avec plusieurs dimensions d’hétérogéneité, tels que les jeux d’entrées ou de participation. je caractérise l’ensemble identifié pour les fonctions de profits des firmes dans un jeux avec deux firmes et à information complète. Dans tout les chapitres, l’ensemble identifié des fonctions d’intérêt sont écrites sous formes de bornes et assez simple pour être estimées à partir des méthodes d’inférence existantes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A group of agents located along a river have quasi-linear preferences over water and money. We ask how the water should be allocated and what money transfers should be performed. We are interested in efficiency, stability (in the sense of the core), and fairness (in a sense to be defined). We first show that the cooperative game associated with our problem is convex : its core is therefore large and easily described. Next, we propose the following fairness requirement : no group of agents should enjoy a welfare higher than what it could achieve in the absence of the remaining agents. We prove that only one welfare vector in the core satisfies this condition : it is the marginal contribution vector corresponding to the ordering of the agents along the river. We discuss how it could be decentralized or implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proves a new representation theorem for domains with both discrete and continuous variables. The result generalizes Debreu's well-known representation theorem on connected domains. A strengthening of the standard continuity axiom is used in order to guarantee the existence of a representation. A generalization of the main theorem and an application of the more general result are also presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Paper Studies Tests of Joint Hypotheses in Time Series Regression with a Unit Root in Which Weakly Dependent and Heterogeneously Distributed Innovations Are Allowed. We Consider Two Types of Regression: One with a Constant and Lagged Dependent Variable, and the Other with a Trend Added. the Statistics Studied Are the Regression \"F-Test\" Originally Analysed by Dickey and Fuller (1981) in a Less General Framework. the Limiting Distributions Are Found Using Functinal Central Limit Theory. New Test Statistics Are Proposed Which Require Only Already Tabulated Critical Values But Which Are Valid in a Quite General Framework (Including Finite Order Arma Models Generated by Gaussian Errors). This Study Extends the Results on Single Coefficients Derived in Phillips (1986A) and Phillips and Perron (1986).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent paper, Bai and Perron (1998) considered theoretical issues related to the limiting distribution of estimators and test statistics in the linear model with multiple structural changes. In this companion paper, we consider practical issues for the empirical applications of the procedures. We first address the problem of estimation of the break dates and present an efficient algorithm to obtain global minimizers of the sum of squared residuals. This algorithm is based on the principle of dynamic programming and requires at most least-squares operations of order O(T 2) for any number of breaks. Our method can be applied to both pure and partial structural-change models. Secondly, we consider the problem of forming confidence intervals for the break dates under various hypotheses about the structure of the data and the errors across segments. Third, we address the issue of testing for structural changes under very general conditions on the data and the errors. Fourth, we address the issue of estimating the number of breaks. We present simulation results pertaining to the behavior of the estimators and tests in finite samples. Finally, a few empirical applications are presented to illustrate the usefulness of the procedures. All methods discussed are implemented in a GAUSS program available upon request for non-profit academic use.