4 resultados para regional climate scenarios
em Université de Montréal, Canada
Resumo:
Réalisées aux échelles internationales et nationales, les études de vulnérabilité aux changements et à la variabilité climatiques sont peu pertinentes dans un processus de prise de décisions à des échelles géographiques plus petites qui représentent les lieux d’implantation des stratégies de réponses envisagées. Les études de vulnérabilité aux changements et à la variabilité climatiques à des échelles géographiques relativement petites dans le secteur agricole sont généralement rares, voire inexistantes au Canada, notamment au Québec. Dans le souci de combler ce vide et de favoriser un processus décisionnel plus éclairé à l’échelle de la ferme, cette étude cherchait principalement à dresser un portrait de l’évolution de la vulnérabilité des fermes productrices de maïs-grain des régions de Montérégie-Ouest et du Lac-St-Jean-Est aux changements et à la variabilité climatiques dans un contexte de multiples sources de pression. Une méthodologie générale constituée d'une évaluation de la vulnérabilité globale à partir d’une combinaison de profils de vulnérabilité aux conditions climatiques et socio-économiques a été adoptée. Pour la période de référence (1985-2005), les profils de vulnérabilité ont été dressés à l’aide d’analyses des coefficients de variation des séries temporelles de rendements et de superficies en maïs-grain. Au moyen de méthodes ethnographiques associées à une technique d’analyse multicritère, le Processus d’analyse hiérarchique (PAH), des scénarios d’indicateurs de capacité adaptative du secteur agricole susmentionné ont été développés pour la période de référence. Ceux-ci ont ensuite servi de point de départ dans l’élaboration des indicateurs de capacité de réponses des producteurs agricoles pour la période future 2010-2039. Pour celle-ci, les deux profils de vulnérabilité sont issus d’une simplification du cadre théorique de « Intergovernmental Panel on Climate Change » (IPCC) relatif aux principales composantes du concept de vulnérabilité. Pour la dimension « sensibilité » du secteur des fermes productrices de maïs-grain des deux régions agricoles aux conditions climatiques, une série de données de rendements a été simulée pour la période future. Ces simulations ont été réalisées à l’aide d’un couplage de cinq scénarios climatiques et du modèle de culture CERES-Maize de « Decision Support System for Agrotechnology Transfer » (DSSAT), version 4.0.2.0. En ce qui concerne l’évaluation de la « capacité adaptative » au cours de la période future, la construction des scénarios d’indicateurs de cette composante a été effectuée selon l’influence potentielle des grandes orientations économiques et environnementales considérées dans l’élaboration des lignes directrices des deux familles d’émissions de gaz à effet de serre (GES) A2 et A1B. L’application de la démarche méthodologique préalablement mentionnée a conduit aux principaux résultats suivants. Au cours de la période de référence, la région agricole du Lac-St-Jean-Est semblait être plus vulnérable aux conditions climatiques que celle de Montérégie-Ouest. En effet, le coefficient de variation des rendements du maïs-grain pour la région du Lac-St-Jean-Est était évalué à 0,35; tandis que celui pour la région de Montérégie-Ouest n’était que de 0,23. Toutefois, par rapport aux conditions socio-économiques, la région de Montérégie-Ouest affichait une vulnérabilité plus élevée que celle du Lac-St-Jean-Est. Les valeurs des coefficients de variation pour les superficies en maïs-grain au cours de la période de référence pour la Montérégie-Ouest et le Lac-St-Jean-Est étaient de 0,66 et 0,48, respectivement. Au cours de la période future 2010-2039, la région du Lac-St-Jean-Est serait, dans l’ensemble, toujours plus vulnérable aux conditions climatiques que celle de Montérégie-Ouest. Les valeurs moyennes des coefficients de variation pour les rendements agricoles anticipés fluctuent entre 0,21 et 0,25 pour la région de Montérégie-Ouest et entre 0,31 et 0,50 pour la région du Lac-St-Jean-Est. Néanmoins, en matière de vulnérabilité future aux conditions socio-économiques, la position relative des deux régions serait fonction du scénario de capacité adaptative considéré. Avec les orientations économiques et environnementales considérées dans l’élaboration des lignes directrices de la famille d’émission de GES A2, les indicateurs de capacité adaptative du secteur à l’étude seraient respectivement de 0,13 et 0,08 pour la Montérégie-Ouest et le Lac-St-Jean-Est. D’autre part, en considérant les lignes directrices de la famille d’émission de GES A1B, la région agricole du Lac-St-Jean-Est aurait une capacité adaptative légèrement supérieure (0,07) à celle de la Montérégie-Ouest (0,06). De façon générale, au cours de la période future, la région du Lac-St-Jean-Est devrait posséder une vulnérabilité globale plus élevée que la région de Montérégie-Ouest. Cette situation s’expliquerait principalement par une plus grande vulnérabilité de la région du Lac-St-Jean-Est aux conditions climatiques. Les résultats de cette étude doivent être appréciés dans le contexte des postulats considérés, de la méthodologie suivie et des spécificités des deux régions agricoles examinées. Essentiellement, avec l’adoption d’une démarche méthodologique simple, cette étude a révélé les caractéristiques « dynamique et relative » du concept de vulnérabilité, l’importance de l’échelle géographique et de la prise en compte d’autres sources de pression et surtout de la considération d’une approche contraire à celle du « agriculteur réfractaire aux changements » dans les travaux d’évaluation de ce concept dans le secteur agricole. Finalement, elle a aussi présenté plusieurs pistes de recherche susceptibles de contribuer à une meilleure évaluation de la vulnérabilité des agriculteurs aux changements climatiques dans un contexte de multiples sources de pression.
Resumo:
Les données provenant de l'échantillonnage fin d'un processus continu (champ aléatoire) peuvent être représentées sous forme d'images. Un test statistique permettant de détecter une différence entre deux images peut être vu comme un ensemble de tests où chaque pixel est comparé au pixel correspondant de l'autre image. On utilise alors une méthode de contrôle de l'erreur de type I au niveau de l'ensemble de tests, comme la correction de Bonferroni ou le contrôle du taux de faux-positifs (FDR). Des méthodes d'analyse de données ont été développées en imagerie médicale, principalement par Keith Worsley, utilisant la géométrie des champs aléatoires afin de construire un test statistique global sur une image entière. Il s'agit d'utiliser l'espérance de la caractéristique d'Euler de l'ensemble d'excursion du champ aléatoire sous-jacent à l'échantillon au-delà d'un seuil donné, pour déterminer la probabilité que le champ aléatoire dépasse ce même seuil sous l'hypothèse nulle (inférence topologique). Nous exposons quelques notions portant sur les champs aléatoires, en particulier l'isotropie (la fonction de covariance entre deux points du champ dépend seulement de la distance qui les sépare). Nous discutons de deux méthodes pour l'analyse des champs anisotropes. La première consiste à déformer le champ puis à utiliser les volumes intrinsèques et les compacités de la caractéristique d'Euler. La seconde utilise plutôt les courbures de Lipschitz-Killing. Nous faisons ensuite une étude de niveau et de puissance de l'inférence topologique en comparaison avec la correction de Bonferroni. Finalement, nous utilisons l'inférence topologique pour décrire l'évolution du changement climatique sur le territoire du Québec entre 1991 et 2100, en utilisant des données de température simulées et publiées par l'Équipe Simulations climatiques d'Ouranos selon le modèle régional canadien du climat.
Différents procédés statistiques pour détecter la non-stationnarité dans les séries de précipitation
Resumo:
Ce mémoire a pour objectif de déterminer si les précipitations convectives estivales simulées par le modèle régional canadien du climat (MRCC) sont stationnaires ou non à travers le temps. Pour répondre à cette question, nous proposons une méthodologie statistique de type fréquentiste et une de type bayésien. Pour l'approche fréquentiste, nous avons utilisé le contrôle de qualité standard ainsi que le CUSUM afin de déterminer si la moyenne a augmenté à travers les années. Pour l'approche bayésienne, nous avons comparé la distribution a posteriori des précipitations dans le temps. Pour ce faire, nous avons modélisé la densité \emph{a posteriori} d'une période donnée et nous l'avons comparée à la densité a posteriori d'une autre période plus éloignée dans le temps. Pour faire la comparaison, nous avons utilisé une statistique basée sur la distance d'Hellinger, la J-divergence ainsi que la norme L2. Au cours de ce mémoire, nous avons utilisé l'ARL (longueur moyenne de la séquence) pour calibrer et pour comparer chacun de nos outils. Une grande partie de ce mémoire sera donc dédiée à l'étude de l'ARL. Une fois nos outils bien calibrés, nous avons utilisé les simulations pour les comparer. Finalement, nous avons analysé les données du MRCC pour déterminer si elles sont stationnaires ou non.
Resumo:
Cette thèse examine les impacts sur la morphologie des tributaires du fleuve Saint-Laurent des changements dans leur débit et leur niveau de base engendrés par les changements climatiques prévus pour la période 2010–2099. Les tributaires sélectionnés (rivières Batiscan, Richelieu, Saint-Maurice, Saint-François et Yamachiche) ont été choisis en raison de leurs différences de taille, de débit et de contexte morphologique. Non seulement ces tributaires subissent-ils un régime hydrologique modifié en raison des changements climatiques, mais leur niveau de base (niveau d’eau du fleuve Saint-Laurent) sera aussi affecté. Le modèle morphodynamique en une dimension (1D) SEDROUT, à l’origine développé pour des rivières graveleuses en mode d’aggradation, a été adapté pour le contexte spécifique des tributaires des basses-terres du Saint-Laurent afin de simuler des rivières sablonneuses avec un débit quotidien variable et des fluctuations du niveau d’eau à l’aval. Un module pour simuler le partage des sédiments autour d’îles a aussi été ajouté au modèle. Le modèle ainsi amélioré (SEDROUT4-M), qui a été testé à l’aide de simulations à petite échelle et avec les conditions actuelles d’écoulement et de transport de sédiments dans quatre tributaires du fleuve Saint-Laurent, peut maintenant simuler une gamme de problèmes morphodynamiques de rivières. Les changements d’élévation du lit et d’apport en sédiments au fleuve Saint-Laurent pour la période 2010–2099 ont été simulés avec SEDROUT4-M pour les rivières Batiscan, Richelieu et Saint-François pour toutes les combinaisons de sept régimes hydrologiques (conditions actuelles et celles prédites par trois modèles de climat globaux (MCG) et deux scénarios de gaz à effet de serre) et de trois scénarios de changements du niveau de base du fleuve Saint-Laurent (aucun changement, baisse graduelle, baisse abrupte). Les impacts sur l’apport de sédiments et l’élévation du lit diffèrent entre les MCG et semblent reliés au statut des cours d’eau (selon qu’ils soient en état d’aggradation, de dégradation ou d’équilibre), ce qui illustre l’importance d’examiner plusieurs rivières avec différents modèles climatiques afin d’établir des tendances dans les effets des changements climatiques. Malgré le fait que le débit journalier moyen et le débit annuel moyen demeurent près de leur valeur actuelle dans les trois scénarios de MCG, des changements importants dans les taux de transport de sédiments simulés pour chaque tributaire sont observés. Ceci est dû à l’impact important de fortes crues plus fréquentes dans un climat futur de même qu’à l’arrivée plus hâtive de la crue printanière, ce qui résulte en une variabilité accrue dans les taux de transport en charge de fond. Certaines complications avec l’approche de modélisation en 1D pour représenter la géométrie complexe des rivières Saint-Maurice et Saint-François suggèrent qu’une approche bi-dimensionnelle (2D) devrait être sérieusement considérée afin de simuler de façon plus exacte la répartition des débits aux bifurcations autour des îles. La rivière Saint-François est utilisée comme étude de cas pour le modèle 2D H2D2, qui performe bien d’un point de vue hydraulique, mais qui requiert des ajustements pour être en mesure de pleinement simuler les ajustements morphologiques des cours d’eau.