7 resultados para recurrent sequence

em Université de Montréal, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

La détermination de la structure tertiaire du ribosome fut une étape importante dans la compréhension du mécanisme de la synthèse des protéines. Par contre, l’élucidation de la structure du ribosome comme tel ne permet pas une compréhension de sa fonction. Pour mieux comprendre la nature des relations entre la structure et la fonction du ribosome, sa structure doit être étudiée de manière systématique. Au cours des dernières années, nous avons entrepris une démarche systématique afin d’identifier et de caractériser de nouveaux motifs structuraux qui existent dans la structure du ribosome et d’autres molécules contenant de l’ARN. L’analyse de plusieurs exemples d’empaquetage de deux hélices d’ARN dans la structure du ribosome nous a permis d’identifier un nouveau motif structural, nommé « G-ribo ». Dans ce motif, l’interaction d’une guanosine dans une hélice avec le ribose d’un nucléotide d’une autre hélice donne naissance à un réseau d’interactions complexes entre les nucléotides voisins. Le motif G-ribo est retrouvé à 8 endroits dans la structure du ribosome. La structure du G-ribo possède certaines particularités qui lui permettent de favoriser la formation d’un certain type de pseudo-nœuds dans le ribosome. L’analyse systématique de la structure du ribosome et de la ARNase P a permis d’identifier un autre motif structural, nommé « DTJ » ou « Double-Twist Joint motif ». Ce motif est formé de trois courtes hélices qui s’empilent l’une sur l’autre. Dans la zone de contact entre chaque paire d’hélices, deux paires de bases consécutives sont surenroulées par rapport à deux paires de bases consécutives retrouvées dans l’ARN de forme A. Un nucléotide d’une paire de bases est toujours connecté directement à un nucléotide de la paire de bases surenroulée, tandis que les nucléotides opposés sont connectés par un ou plusieurs nucléotides non appariés. L’introduction d’un surenroulement entre deux paires de bases consécutives brise l’empilement entre les nucléotides et déstabilise l’hélice d’ARN. Dans le motif DTJ, les nucléotides non appariés qui lient les deux paires de bases surenroulées interagissent avec une des trois hélices qui forment le motif, offrant ainsi une stratégie élégante de stabilisation de l’arrangement. Pour déterminer les contraintes de séquences imposées sur la structure tertiaire d’un motif récurrent dans le ribosome, nous avons développé une nouvelle approche expérimentale. Nous avons introduit des librairies combinatoires de certains nucléotides retrouvés dans des motifs particuliers du ribosome. Suite à l’analyse des séquences alternatives sélectionnées in vivo pour différents représentants d’un motif, nous avons été en mesure d’identifier les contraintes responsables de l’intégrité d’un motif et celles responsables d’interactions avec les éléments qui forment le contexte structural du motif. Les résultats présentés dans cette thèse élargissent considérablement notre compréhension des principes de formation de la structure d’ARN et apportent une nouvelle façon d’identifier et de caractériser de nouveaux motifs structuraux d’ARN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Affiliation: Département de biochimie, Faculté de médecine, Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La plupart des molécules d’ARN doivent se replier en structure tertiaire complexe afin d’accomplir leurs fonctions biologiques. Cependant, les déterminants d’une chaîne de polynucléotides qui sont nécessaires à son repliement et à ses interactions avec d’autres éléments sont essentiellement inconnus. L’établissement des relations structure-fonction dans les grandes molécules d’ARN passe inévitablement par l’analyse de chaque élément de leur structure de façon individuelle et en contexte avec d’autres éléments. À l’image d’une construction d’immeuble, une structure d’ARN est composée d’unités répétitives assemblées de façon spécifique. Les motifs récurrents d’ARN sont des arrangements de nucléotides retrouvés à différents endroits d’une structure tertiaire et possèdent des conformations identiques ou très similaires. Ainsi, une des étapes nécessaires à la compréhension de la structure et de la fonction des molécules d’ARN consiste à identifier de façon systématique les motifs récurrents et d’en effectuer une analyse comparative afin d’établir la séquence consensus. L’analyse de tous les cas d’empaquetage de doubles hélices dans la structure du ribosome a permis l’identification d’un nouvel arrangement nommé motif d’empaquetage le long du sillon (AGPM) (along-groove packing motif). Ce motif est retrouvé à 14 endroits dans la structure du ribosome de même qu’entre l’ARN ribosomique 23S et les molécules d’ARN de transfert liées aux sites ribosomaux P et E. Le motif se forme par l’empaquetage de deux doubles hélices via leur sillon mineur. Le squelette sucre-phosphate d’une hélice voyage le long du sillon mineur de l’autre hélice et vice versa. Dans chacune des hélices, la région de contact comprend quatre paires de bases. L’empaquetage le plus serré est retrouvé au centre de l’arrangement où l’on retrouve souvent une paire de bases GU dans une hélice interagissant avec une paire de bases Watson-Crick (WC) dans l’autre hélice. Même si la présence des paires de bases centrales GU versus WC au centre du motif augmente sa stabilité, d’autres alternatives existent pour différents représentants du motif. L’analyse comparative de trois librairies combinatoires de gènes d’AGPM, où les paires de bases centrales ont été variées de manière complètement aléatoire, a montré que le contexte structural influence l’étendue de la variabilité des séquences de nucléotides formant les paires de bases centrales. Le fait que l’identité des paires de bases centrales puisse varier suggérait la présence d’autres déterminants responsables au maintien de l’intégrité du motif. L’analyse de tous les contacts entre les hélices a révélé qu’en dehors du centre du motif, les interactions entre les squelettes sucre-phosphate s’effectuent via trois contacts ribose-ribose. Pour chacun de ces contacts, les riboses des nucléotides qui interagissent ensemble doivent adopter des positions particulières afin d’éviter qu’ils entrent en collision. Nous montrons que la position de ces riboses est modulée par des conformations spécifiques des paires de bases auxquelles ils appartiennent. Finalement, un autre motif récurrent identifié à l’intérieur même de la structure de trois cas d’AGPM a été nommé « adenosine-wedge ». Son analyse a révélé que ce dernier est lui-même composé d’un autre arrangement, nommé motif triangle-NAG (NAG-triangle). Nous montrons que le motif « adenosine-wedge » représente un arrangement complexe d’ARN composé de quatre éléments répétitifs, c’est-à-dire des motifs AGPM, « hook-turn », « A-minor » et triangle-NAG. Ceci illustre clairement l’arrangement hiérarchique des structures d’ARN qui peut aussi être observé pour d’autres motifs d’ARN. D’un point de vue plus global, mes résultats enrichissent notre compréhension générale du rôle des différents types d’interactions tertiaires dans la formation des molécules d’ARN complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L'apprentissage profond est un domaine de recherche en forte croissance en apprentissage automatique qui est parvenu à des résultats impressionnants dans différentes tâches allant de la classification d'images à la parole, en passant par la modélisation du langage. Les réseaux de neurones récurrents, une sous-classe d'architecture profonde, s'avèrent particulièrement prometteurs. Les réseaux récurrents peuvent capter la structure temporelle dans les données. Ils ont potentiellement la capacité d'apprendre des corrélations entre des événements éloignés dans le temps et d'emmagasiner indéfiniment des informations dans leur mémoire interne. Dans ce travail, nous tentons d'abord de comprendre pourquoi la profondeur est utile. Similairement à d'autres travaux de la littérature, nos résultats démontrent que les modèles profonds peuvent être plus efficaces pour représenter certaines familles de fonctions comparativement aux modèles peu profonds. Contrairement à ces travaux, nous effectuons notre analyse théorique sur des réseaux profonds acycliques munis de fonctions d'activation linéaires par parties, puisque ce type de modèle est actuellement l'état de l'art dans différentes tâches de classification. La deuxième partie de cette thèse porte sur le processus d'apprentissage. Nous analysons quelques techniques d'optimisation proposées récemment, telles l'optimisation Hessian free, la descente de gradient naturel et la descente des sous-espaces de Krylov. Nous proposons le cadre théorique des méthodes à région de confiance généralisées et nous montrons que plusieurs de ces algorithmes développés récemment peuvent être vus dans cette perspective. Nous argumentons que certains membres de cette famille d'approches peuvent être mieux adaptés que d'autres à l'optimisation non convexe. La dernière partie de ce document se concentre sur les réseaux de neurones récurrents. Nous étudions d'abord le concept de mémoire et tentons de répondre aux questions suivantes: Les réseaux récurrents peuvent-ils démontrer une mémoire sans limite? Ce comportement peut-il être appris? Nous montrons que cela est possible si des indices sont fournis durant l'apprentissage. Ensuite, nous explorons deux problèmes spécifiques à l'entraînement des réseaux récurrents, à savoir la dissipation et l'explosion du gradient. Notre analyse se termine par une solution au problème d'explosion du gradient qui implique de borner la norme du gradient. Nous proposons également un terme de régularisation conçu spécifiquement pour réduire le problème de dissipation du gradient. Sur un ensemble de données synthétique, nous montrons empiriquement que ces mécanismes peuvent permettre aux réseaux récurrents d'apprendre de façon autonome à mémoriser des informations pour une période de temps indéfinie. Finalement, nous explorons la notion de profondeur dans les réseaux de neurones récurrents. Comparativement aux réseaux acycliques, la définition de profondeur dans les réseaux récurrents est souvent ambiguë. Nous proposons différentes façons d'ajouter de la profondeur dans les réseaux récurrents et nous évaluons empiriquement ces propositions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les positions des évènements de recombinaison s’agrègent ensemble, formant des hotspots déterminés en partie par la protéine à évolution rapide PRDM9. En particulier, ces positions de hotspots sont déterminées par le domaine de doigts de zinc (ZnF) de PRDM9 qui reconnait certains motifs d’ADN. Les allèles de PRDM9 contenant le ZnF de type k ont été préalablement associés avec une cohorte de patients affectés par la leucémie aigüe lymphoblastique. Les allèles de PRDM9 sont difficiles à identifier à partir de données de séquençage de nouvelle génération (NGS), en raison de leur nature répétitive. Dans ce projet, nous proposons une méthode permettant la caractérisation d’allèles de PRDM9 à partir de données de NGS, qui identifie le nombre d’allèles contenant un type spécifique de ZnF. Cette méthode est basée sur la corrélation entre les profils représentant le nombre de séquences nucléotidiques uniques à chaque ZnF retrouvés chez les lectures de NGS simulées sans erreur d’une paire d’allèles et chez les lectures d’un échantillon. La validité des prédictions obtenues par notre méthode est confirmée grâce à analyse basée sur les simulations. Nous confirmons également que la méthode peut correctement identifier le génotype d’allèles de PRDM9 qui n’ont pas encore été identifiés. Nous conduisons une analyse préliminaire identifiant le génotype des allèles de PRDM9 contenant un certain type de ZnF dans une cohorte de patients atteints de glioblastomes multiforme pédiatrique, un cancer du cerveau caractérisé par les mutations récurrentes dans le gène codant pour l’histone H3, la cible de l’activité épigénétique de PRDM9. Cette méthode ouvre la possibilité d’identifier des associations entre certains allèles de PRDM9 et d’autres types de cancers pédiatriques, via l’utilisation de bases de données de NGS de cellules tumorales.