4 resultados para probabilistic ranking

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide a survey of the literature on ranking sets of objects. The interpretations of those set rankings include those employed in the theory of choice under complete uncertainty, rankings of opportunity sets, set rankings that appear in matching theory, and the structure of assembly preferences. The survey is prepared for the Handbook of Utility Theory, vol. 2, edited by Salvador Barberà, Peter Hammond, and Christian Seidl, to be published by Kluwer Academic Publishers. The chapter number is provisional.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a probabilistic approach to the problem of assigning k indivisible identical objects to a set of agents with single-peaked preferences. Using the ordinal extension of preferences, we characterize the class of uniform probabilistic rules by Pareto efficiency, strategy-proofness, and no-envy. We also show that in this characterization no-envy cannot be replaced by anonymity. When agents are strictly risk averse von-Neumann-Morgenstern utility maximizers, then we reduce the problem of assigning k identical objects to a problem of allocating the amount k of an infinitely divisible commodity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the help of an illustrative general equilibrium (CGE) model of the Moroccan Economy, we test for the significance of simulation results in the case where the exact macromesure is not known with certainty. This is done by computing lower and upper bounds for the simulation resukts, given a priori probabilities attached to three possible closures (Classical, Johansen, Keynesian). Our Conclusion is that, when there is uncertainty on closures several endogenous changes lack significance, which, in turn, limit the use of the model for policy prescriptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Each item in a given collection is characterized by a set of possible performances. A (ranking) method is a function that assigns an ordering of the items to every performance profile. Ranking by Rating consists in evaluating each item’s performance by using an exogenous rating function, and ranking items according to their performance ratings. Any such method is separable: the ordering of two items does not depend on the performances of the remaining items. We prove that every separable method must be of the ranking-by-rating type if (i) the set of possible performances is the same for all items and the method is anonymous, or (ii) the set of performances of each item is ordered and the method is monotonic. When performances are m-dimensional vectors, a separable, continuous, anonymous, monotonic, and invariant method must rank items according to a weighted geometric mean of their performances along the m dimensions.