5 resultados para preconditioning convection-diffusion equation matrix equation
em Université de Montréal, Canada
Resumo:
On retrouve dans la nature un nombre impressionnant de matériaux semi-transparents tels le marbre, le jade ou la peau, ainsi que plusieurs liquides comme le lait ou les jus. Que ce soit pour le domaine cinématographique ou le divertissement interactif, l'intérêt d'obtenir une image de synthèse de ce type de matériau demeure toujours très important. Bien que plusieurs méthodes arrivent à simuler la diffusion de la lumière de manière convaincante a l'intérieur de matériaux semi-transparents, peu d'entre elles y arrivent de manière interactive. Ce mémoire présente une nouvelle méthode de diffusion de la lumière à l'intérieur d'objets semi-transparents hétérogènes en temps réel. Le coeur de la méthode repose sur une discrétisation du modèle géométrique sous forme de voxels, ceux-ci étant utilisés comme simplification du domaine de diffusion. Notre technique repose sur la résolution de l'équation de diffusion à l'aide de méthodes itératives permettant d'obtenir une simulation rapide et efficace. Notre méthode se démarque principalement par son exécution complètement dynamique ne nécessitant aucun pré-calcul et permettant une déformation complète de la géométrie.
Resumo:
La fibrillation auriculaire (FA) est la forme d’arythmie la plus fréquente et représente environ un tiers des hospitalisations attribuables aux troubles du rythme cardiaque. Les mécanismes d’initiation et de maintenance de la FA sont complexes et multiples. Parmi ceux-ci, une contribution du système nerveux autonome a été identifiée mais son rôle exact demeure mal compris. Ce travail cible l’étude de la modulation induite par l’acétylcholine (ACh) sur l’initiation et le maintien de la FA, en utilisant un modèle de tissu bidimensionnel. La propagation de l’influx électrique sur ce tissu est décrite par une équation réaction-diffusion non-linéaire résolue sur un maillage rectangulaire avec une méthode de différences finies, et la cinétique d'ACh suit une évolution temporelle prédéfinie qui correspond à l’activation du système parasympathique. Plus de 4400 simulations ont été réalisées sur la base de 4 épisodes d’arythmies, 5 tailles différentes de région modulée par l’ACh, 10 concentrations d’ACh et 22 constantes de temps de libération et de dégradation d’ACh. La complexité de la dynamique des réentrées est décrite en fonction de la constante de temps qui représente le taux de variation d’ACh. Les résultats obtenus suggèrent que la stimulation vagale peut mener soit à une dynamique plus complexe des réentrées soit à l’arrêt de la FA en fonction des quatre paramètres étudiés. Ils démontrent qu’une décharge vagale rapide, représentée par des constantes de temps faibles combinées à une quantité suffisamment grande d’ACh, a une forte probabilité de briser la réentrée primaire provoquant une activité fibrillatoire. Cette activité est caractérisée par la création de plusieurs ondelettes à partir d’un rotor primaire sous l’effet de l’hétérogénéité du gradient de repolarisation causé par l’activité autonomique.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic concusions remain valid.
Resumo:
In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (1972) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopted is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon (1993). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally, three applications to GARCH and realized volatility models are presented.