3 resultados para passive daylighting collectors
em Université de Montréal, Canada
Resumo:
Poor bioavailability and poor pharmacokinetic characteristics are some of the leading causes of drug development failure. Therefore, poorly-soluble drugs, fragile proteins or nucleic acid products may benefit from their encapsulation in nanosized vehicles, providing enhanced solubilisation, protection against degradation, and increased access to pathological compartments. A key element for the success of drug-loaded nanocarriers (NC) is their ability to either cross biological barriers themselves or allow loaded drugs to traverse them to achieve optimal pharmacological action at pathological sites. Depending on the mode of administration, NC may have to cross different physiological barriers in their journey towards their target. In this review, the crossing of biological barriers by passive targeting strategies will be presented for intravenous delivery (vascular endothelial lining, particularly for tumour vasculature and blood-brain barrier targeting), oral administration (gastrointestinal lining) and upper airway administration (pulmonary epithelium). For each specific barrier, background information will be provided on the structure and biology of the tissues involved as well as available pathways for nano-objects or loaded drugs (diffusion and convection through fenestration, transcytosis, tight junction crossing, etc.). The determinants of passive targeting − size, shape, surface chemistry, surface patterning of nanovectors − will be discussed in light of current results. Perspectives on each mode of administration will be presented. The focus will be on polymeric nanoparticles and dendrimers although advances in liposome technology will be also reported as they represent the largest body in the drug delivery literature.
Resumo:
The aim of this study was to present a new methodology for evaluating the pelvic floor muscle (PFM) passive properties. The properties were assessed in 13 continent women using an intra-vaginal dynamometric speculum and EMG (to ensure the subjects were relaxed) in four different conditions: (1) forces recorded at minimal aperture (initial passive resistance); (2) passive resistance at maximal aperture; (3) forces and passive elastic stiffness (PES) evaluated during five lengthening and shortening cycles; and (4) percentage loss of resistance after 1 min of sustained stretch. The PFMs and surrounding tissues were stretched, at constant speed, by increasing the vaginal antero-posterior diameter; different apertures were considered. Hysteresis was also calculated. The procedure was deemed acceptable by all participants. The median passive forces recorded ranged from 0.54 N (interquartile range 1.52) for minimal aperture to 8.45 N (interquartile range 7.10) for maximal aperture while the corresponding median PES values were 0.17 N/mm (interquartile range 0.28) and 0.67 N/mm (interquartile range 0.60). Median hysteresis was 17.24 N∗mm (interquartile range 35.60) and the median percentage of force losses was 11.17% (interquartile range 13.33). This original approach to evaluating the PFM passive properties is very promising for providing better insight into the patho-physiology of stress urinary incontinence and pinpointing conservative treatment mechanisms.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.