7 resultados para parametric and nonparametric test
em Université de Montréal, Canada
Resumo:
In the analysis of tax reform, when equity is traded off against efficiency, the measurement of the latter requires us to know how tax-induced price changes affect quantities supplied and demanded. in this paper, we present various econometric procedures for estimating how taxes affect demand.
Resumo:
This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur: (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.
Resumo:
The GARCH and Stochastic Volatility paradigms are often brought into conflict as two competitive views of the appropriate conditional variance concept : conditional variance given past values of the same series or conditional variance given a larger past information (including possibly unobservable state variables). The main thesis of this paper is that, since in general the econometrician has no idea about something like a structural level of disaggregation, a well-written volatility model should be specified in such a way that one is always allowed to reduce the information set without invalidating the model. To this respect, the debate between observable past information (in the GARCH spirit) versus unobservable conditioning information (in the state-space spirit) is irrelevant. In this paper, we stress a square-root autoregressive stochastic volatility (SR-SARV) model which remains true to the GARCH paradigm of ARMA dynamics for squared innovations but weakens the GARCH structure in order to obtain required robustness properties with respect to various kinds of aggregation. It is shown that the lack of robustness of the usual GARCH setting is due to two very restrictive assumptions : perfect linear correlation between squared innovations and conditional variance on the one hand and linear relationship between the conditional variance of the future conditional variance and the squared conditional variance on the other hand. By relaxing these assumptions, thanks to a state-space setting, we obtain aggregation results without renouncing to the conditional variance concept (and related leverage effects), as it is the case for the recently suggested weak GARCH model which gets aggregation results by replacing conditional expectations by linear projections on symmetric past innovations. Moreover, unlike the weak GARCH literature, we are able to define multivariate models, including higher order dynamics and risk premiums (in the spirit of GARCH (p,p) and GARCH in mean) and to derive conditional moment restrictions well suited for statistical inference. Finally, we are able to characterize the exact relationships between our SR-SARV models (including higher order dynamics, leverage effect and in-mean effect), usual GARCH models and continuous time stochastic volatility models, so that previous results about aggregation of weak GARCH and continuous time GARCH modeling can be recovered in our framework.
Resumo:
We consider the problem of testing whether the observations X1, ..., Xn of a time series are independent with unspecified (possibly nonidentical) distributions symmetric about a common known median. Various bounds on the distributions of serial correlation coefficients are proposed: exponential bounds, Eaton-type bounds, Chebyshev bounds and Berry-Esséen-Zolotarev bounds. The bounds are exact in finite samples, distribution-free and easy to compute. The performance of the bounds is evaluated and compared with traditional serial dependence tests in a simulation experiment. The procedures proposed are applied to U.S. data on interest rates (commercial paper rate).
Resumo:
Dans ma thèse, je me sers de modèles de recherche solides pour répondre à des questions importantes de politique publique. Mon premier chapitre évalue l’impact causal de l’allégeance partisane (républicain ou démocrate) des gouverneurs américains sur le marché du travail. Dans ce chapitre, je combine les élections des gouverneurs avec les données du March CPS pour les années fiscales 1977 à 2008. En utilisant un modèle de régression par discontinuité, je trouve que les gouverneurs démocrates sont associés à de plus faibles revenus individuels moyens. Je mets en évidence que cela est entrainée par un changement dans la composition de la main-d’oeuvre à la suite d’une augmentation de l’emploi des travailleurs à revenus faibles et moyens. Je trouve que les gouverneurs démocrates provoquent une augmentation de l’emploi des noirs et de leurs heures travaillées. Ces résultats conduisent à une réduction de l’écart salarial entre les travailleurs noir et blanc. Mon deuxième chapitre étudie l’impact causal des fusillades qui se produisent dans les écoles secondaires américaines sur les performances des éléves et les résultats des écoles tels que les effectifs et le nombre d’enseignants recruté, a l’aide d’une stratégie de différence-en-différence. Le chapitre est coécrit avec Dongwoo Kim. Nous constatons que les fusillades dans les écoles réduisent significativement l’effectif des élèves de 9e année, la proportion d’élèves ayant un niveau adéquat en anglais et en mathématiques. Nous examinons aussi l’effet hétérogene des tueries dans les écoles secondaires entre les crimes et les suicides. Nous trouvons que les fusillades de natures criminelles provoquent la diminution du nombre d’inscriptions et de la proportion d’élèves adéquats en anglais et mathématiques. En utilisant des données sur les élèves en Californie, nous confirmons qu’une partie de l’effet sur la performance des élèves provient des étudiants inscrits et ce n’est pas uniquement un effet de composition. Mon troisième chapitre étudie l’impact des cellulaires sur la performance scolaire des élèves. Le chapitre est coécrit avec Richard Murphy. Dans ce chapitre, nous combinons une base de données unique contenant les politiques de téléphonie mobile des écoles obtenues à partir d’une enquète auprès des écoles dans quatre villes en Angleterre avec des données administratives sur la performance scolaire des éleves. Nous étudions ainsi l’impact de l’introduction d’une interdiction de téléphonie mobile sur le rendement des éleves. Nos résultats indiquent qu’il y a une augmentation du rendement des éleves après l’instauration de l’interdiction des cellulaires à l’école, ce qui suggère que les téléphones mobiles sont sources de distraction pour l’apprentissage et l’introduction d’une interdiction à l’école limite ce problème.