12 resultados para parameter estimates
em Université de Montréal, Canada
Resumo:
In This Paper Several Additional Gmm Specification Tests Are Studied. a First Test Is a Chow-Type Test for Structural Parameter Stability of Gmm Estimates. the Test Is Inspired by the Fact That \"Taste and Technology\" Parameters Are Uncovered. the Second Set of Specification Tests Are Var Encompassing Tests. It Is Assumed That the Dgp Has a Finite Var Representation. the Moment Restrictions Which Are Suggested by Economic Theory and Exploited in the Gmm Procedure Represent One Possible Characterization of the Dgp. the Var Is a Different But Compatible Characterization of the Same Dgp. the Idea of the Var Encompassing Tests Is to Compare Parameter Estimates of the Euler Conditions and Var Representations of the Dgp Obtained Separately with Parameter Estimates of the Euler Conditions and Var Representations Obtained Jointly. There Are Several Ways to Construct Joint Systems Which Are Discussed in the Paper. Several Applications Are Also Discussed.
Resumo:
Le développement d’un médicament est non seulement complexe mais les retours sur investissment ne sont pas toujours ceux voulus ou anticipés. Plusieurs médicaments échouent encore en Phase III même avec les progrès technologiques réalisés au niveau de plusieurs aspects du développement du médicament. Ceci se traduit en un nombre décroissant de médicaments qui sont commercialisés. Il faut donc améliorer le processus traditionnel de développement des médicaments afin de faciliter la disponibilité de nouveaux produits aux patients qui en ont besoin. Le but de cette recherche était d’explorer et de proposer des changements au processus de développement du médicament en utilisant les principes de la modélisation avancée et des simulations d’essais cliniques. Dans le premier volet de cette recherche, de nouveaux algorithmes disponibles dans le logiciel ADAPT 5® ont été comparés avec d’autres algorithmes déjà disponibles afin de déterminer leurs avantages et leurs faiblesses. Les deux nouveaux algorithmes vérifiés sont l’itératif à deux étapes (ITS) et le maximum de vraisemblance avec maximisation de l’espérance (MLEM). Les résultats de nos recherche ont démontré que MLEM était supérieur à ITS. La méthode MLEM était comparable à l’algorithme d’estimation conditionnelle de premier ordre (FOCE) disponible dans le logiciel NONMEM® avec moins de problèmes de rétrécissement pour les estimés de variances. Donc, ces nouveaux algorithmes ont été utilisés pour la recherche présentée dans cette thèse. Durant le processus de développement d’un médicament, afin que les paramètres pharmacocinétiques calculés de façon noncompartimentale soient adéquats, il faut que la demi-vie terminale soit bien établie. Des études pharmacocinétiques bien conçues et bien analysées sont essentielles durant le développement des médicaments surtout pour les soumissions de produits génériques et supergénériques (une formulation dont l'ingrédient actif est le même que celui du médicament de marque, mais dont le profil de libération du médicament est différent de celui-ci) car elles sont souvent les seules études essentielles nécessaires afin de décider si un produit peut être commercialisé ou non. Donc, le deuxième volet de la recherche visait à évaluer si les paramètres calculer d’une demi-vie obtenue à partir d'une durée d'échantillonnage réputée trop courte pour un individu pouvaient avoir une incidence sur les conclusions d’une étude de bioéquivalence et s’ils devaient être soustraits d’analyses statistiques. Les résultats ont démontré que les paramètres calculer d’une demi-vie obtenue à partir d'une durée d'échantillonnage réputée trop courte influençaient de façon négative les résultats si ceux-ci étaient maintenus dans l’analyse de variance. Donc, le paramètre de surface sous la courbe à l’infini pour ces sujets devrait être enlevé de l’analyse statistique et des directives à cet effet sont nécessaires a priori. Les études finales de pharmacocinétique nécessaires dans le cadre du développement d’un médicament devraient donc suivre cette recommandation afin que les bonnes décisions soient prises sur un produit. Ces informations ont été utilisées dans le cadre des simulations d’essais cliniques qui ont été réalisées durant la recherche présentée dans cette thèse afin de s’assurer d’obtenir les conclusions les plus probables. Dans le dernier volet de cette thèse, des simulations d’essais cliniques ont amélioré le processus du développement clinique d’un médicament. Les résultats d’une étude clinique pilote pour un supergénérique en voie de développement semblaient très encourageants. Cependant, certaines questions ont été soulevées par rapport aux résultats et il fallait déterminer si le produit test et référence seraient équivalents lors des études finales entreprises à jeun et en mangeant, et ce, après une dose unique et des doses répétées. Des simulations d’essais cliniques ont été entreprises pour résoudre certaines questions soulevées par l’étude pilote et ces simulations suggéraient que la nouvelle formulation ne rencontrerait pas les critères d’équivalence lors des études finales. Ces simulations ont aussi aidé à déterminer quelles modifications à la nouvelle formulation étaient nécessaires afin d’améliorer les chances de rencontrer les critères d’équivalence. Cette recherche a apporté des solutions afin d’améliorer différents aspects du processus du développement d’un médicament. Particulièrement, les simulations d’essais cliniques ont réduit le nombre d’études nécessaires pour le développement du supergénérique, le nombre de sujets exposés inutilement au médicament, et les coûts de développement. Enfin, elles nous ont permis d’établir de nouveaux critères d’exclusion pour des analyses statistiques de bioéquivalence. La recherche présentée dans cette thèse est de suggérer des améliorations au processus du développement d’un médicament en évaluant de nouveaux algorithmes pour des analyses compartimentales, en établissant des critères d’exclusion de paramètres pharmacocinétiques (PK) pour certaines analyses et en démontrant comment les simulations d’essais cliniques sont utiles.
Resumo:
Des études récentes ont rapporté que les individus âgés avec un trouble cognitif léger (TCL) ont de plus grandes activations en lien avec la réalisation d’une tâche cognitive que des personnes âgées saines. Des auteurs ont proposé que ces hyperactivations pourraient refléter des processus de plasticité cérébrale compensatoires ayant lieu pendant la phase précoce de la maladie d’Alzheimer. Des processus de compensations fonctionnelles pourraient émerger en réponse à une perte d’intégrité structurelle dans les régions du cerveau normalement requises pour compléter une tâche. Dans ce mémoire, j’ai évalué cette hypothèse chez des personnes avec TCL en faisant appel à une tâche de mémoire de travail comportant plusieurs niveaux de difficulté ainsi qu’aux techniques d’imagerie par résonnance magnétique (IRM) structurelle et fonctionnelle. Des analyses de régression multiples ont été utilisées afin d’identifier les régions cérébrales dont l’activité variait en fonction de l’intégrité neuronale telle que définie par le volume de l’hippocampe. Les valeurs estimées des paramètres du signal de ces régions furent ensuite extraites afin de procéder à des analyses corrélationnelles sur la performance ainsi que sur le volume de différentes structures cérébrales. Les résultats indiquent des hyperactivations dans les régions frontales droites chez les participants TCL souffrant d’une plus grande atteinte neuronale. De plus, le niveau d’activation est négativement corrélé au volume de structures frontales et pariétales. Ces résultats indique la présence d’une hyperactivation compensatoire dans la phase du TCL associée à la réalisation d’une tâche de mémoire de travail.
Resumo:
Avec les avancements de la technologie de l'information, les données temporelles économiques et financières sont de plus en plus disponibles. Par contre, si les techniques standard de l'analyse des séries temporelles sont utilisées, une grande quantité d'information est accompagnée du problème de dimensionnalité. Puisque la majorité des séries d'intérêt sont hautement corrélées, leur dimension peut être réduite en utilisant l'analyse factorielle. Cette technique est de plus en plus populaire en sciences économiques depuis les années 90. Étant donnée la disponibilité des données et des avancements computationnels, plusieurs nouvelles questions se posent. Quels sont les effets et la transmission des chocs structurels dans un environnement riche en données? Est-ce que l'information contenue dans un grand ensemble d'indicateurs économiques peut aider à mieux identifier les chocs de politique monétaire, à l'égard des problèmes rencontrés dans les applications utilisant des modèles standards? Peut-on identifier les chocs financiers et mesurer leurs effets sur l'économie réelle? Peut-on améliorer la méthode factorielle existante et y incorporer une autre technique de réduction de dimension comme l'analyse VARMA? Est-ce que cela produit de meilleures prévisions des grands agrégats macroéconomiques et aide au niveau de l'analyse par fonctions de réponse impulsionnelles? Finalement, est-ce qu'on peut appliquer l'analyse factorielle au niveau des paramètres aléatoires? Par exemple, est-ce qu'il existe seulement un petit nombre de sources de l'instabilité temporelle des coefficients dans les modèles macroéconomiques empiriques? Ma thèse, en utilisant l'analyse factorielle structurelle et la modélisation VARMA, répond à ces questions à travers cinq articles. Les deux premiers chapitres étudient les effets des chocs monétaire et financier dans un environnement riche en données. Le troisième article propose une nouvelle méthode en combinant les modèles à facteurs et VARMA. Cette approche est appliquée dans le quatrième article pour mesurer les effets des chocs de crédit au Canada. La contribution du dernier chapitre est d'imposer la structure à facteurs sur les paramètres variant dans le temps et de montrer qu'il existe un petit nombre de sources de cette instabilité. Le premier article analyse la transmission de la politique monétaire au Canada en utilisant le modèle vectoriel autorégressif augmenté par facteurs (FAVAR). Les études antérieures basées sur les modèles VAR ont trouvé plusieurs anomalies empiriques suite à un choc de la politique monétaire. Nous estimons le modèle FAVAR en utilisant un grand nombre de séries macroéconomiques mensuelles et trimestrielles. Nous trouvons que l'information contenue dans les facteurs est importante pour bien identifier la transmission de la politique monétaire et elle aide à corriger les anomalies empiriques standards. Finalement, le cadre d'analyse FAVAR permet d'obtenir les fonctions de réponse impulsionnelles pour tous les indicateurs dans l'ensemble de données, produisant ainsi l'analyse la plus complète à ce jour des effets de la politique monétaire au Canada. Motivée par la dernière crise économique, la recherche sur le rôle du secteur financier a repris de l'importance. Dans le deuxième article nous examinons les effets et la propagation des chocs de crédit sur l'économie réelle en utilisant un grand ensemble d'indicateurs économiques et financiers dans le cadre d'un modèle à facteurs structurel. Nous trouvons qu'un choc de crédit augmente immédiatement les diffusions de crédit (credit spreads), diminue la valeur des bons de Trésor et cause une récession. Ces chocs ont un effet important sur des mesures d'activité réelle, indices de prix, indicateurs avancés et financiers. Contrairement aux autres études, notre procédure d'identification du choc structurel ne requiert pas de restrictions temporelles entre facteurs financiers et macroéconomiques. De plus, elle donne une interprétation des facteurs sans restreindre l'estimation de ceux-ci. Dans le troisième article nous étudions la relation entre les représentations VARMA et factorielle des processus vectoriels stochastiques, et proposons une nouvelle classe de modèles VARMA augmentés par facteurs (FAVARMA). Notre point de départ est de constater qu'en général les séries multivariées et facteurs associés ne peuvent simultanément suivre un processus VAR d'ordre fini. Nous montrons que le processus dynamique des facteurs, extraits comme combinaison linéaire des variables observées, est en général un VARMA et non pas un VAR comme c'est supposé ailleurs dans la littérature. Deuxièmement, nous montrons que même si les facteurs suivent un VAR d'ordre fini, cela implique une représentation VARMA pour les séries observées. Alors, nous proposons le cadre d'analyse FAVARMA combinant ces deux méthodes de réduction du nombre de paramètres. Le modèle est appliqué dans deux exercices de prévision en utilisant des données américaines et canadiennes de Boivin, Giannoni et Stevanovic (2010, 2009) respectivement. Les résultats montrent que la partie VARMA aide à mieux prévoir les importants agrégats macroéconomiques relativement aux modèles standards. Finalement, nous estimons les effets de choc monétaire en utilisant les données et le schéma d'identification de Bernanke, Boivin et Eliasz (2005). Notre modèle FAVARMA(2,1) avec six facteurs donne les résultats cohérents et précis des effets et de la transmission monétaire aux États-Unis. Contrairement au modèle FAVAR employé dans l'étude ultérieure où 510 coefficients VAR devaient être estimés, nous produisons les résultats semblables avec seulement 84 paramètres du processus dynamique des facteurs. L'objectif du quatrième article est d'identifier et mesurer les effets des chocs de crédit au Canada dans un environnement riche en données et en utilisant le modèle FAVARMA structurel. Dans le cadre théorique de l'accélérateur financier développé par Bernanke, Gertler et Gilchrist (1999), nous approximons la prime de financement extérieur par les credit spreads. D'un côté, nous trouvons qu'une augmentation non-anticipée de la prime de financement extérieur aux États-Unis génère une récession significative et persistante au Canada, accompagnée d'une hausse immédiate des credit spreads et taux d'intérêt canadiens. La composante commune semble capturer les dimensions importantes des fluctuations cycliques de l'économie canadienne. L'analyse par décomposition de la variance révèle que ce choc de crédit a un effet important sur différents secteurs d'activité réelle, indices de prix, indicateurs avancés et credit spreads. De l'autre côté, une hausse inattendue de la prime canadienne de financement extérieur ne cause pas d'effet significatif au Canada. Nous montrons que les effets des chocs de crédit au Canada sont essentiellement causés par les conditions globales, approximées ici par le marché américain. Finalement, étant donnée la procédure d'identification des chocs structurels, nous trouvons des facteurs interprétables économiquement. Le comportement des agents et de l'environnement économiques peut varier à travers le temps (ex. changements de stratégies de la politique monétaire, volatilité de chocs) induisant de l'instabilité des paramètres dans les modèles en forme réduite. Les modèles à paramètres variant dans le temps (TVP) standards supposent traditionnellement les processus stochastiques indépendants pour tous les TVPs. Dans cet article nous montrons que le nombre de sources de variabilité temporelle des coefficients est probablement très petit, et nous produisons la première évidence empirique connue dans les modèles macroéconomiques empiriques. L'approche Factor-TVP, proposée dans Stevanovic (2010), est appliquée dans le cadre d'un modèle VAR standard avec coefficients aléatoires (TVP-VAR). Nous trouvons qu'un seul facteur explique la majorité de la variabilité des coefficients VAR, tandis que les paramètres de la volatilité des chocs varient d'une façon indépendante. Le facteur commun est positivement corrélé avec le taux de chômage. La même analyse est faite avec les données incluant la récente crise financière. La procédure suggère maintenant deux facteurs et le comportement des coefficients présente un changement important depuis 2007. Finalement, la méthode est appliquée à un modèle TVP-FAVAR. Nous trouvons que seulement 5 facteurs dynamiques gouvernent l'instabilité temporelle dans presque 700 coefficients.
Resumo:
This paper studies the interdependence between fiscal and monetary policies, and their joint role in the determination of the price level. The government is characterized by a long-run fiscal policy rule whereby a given fraction of the outstanding debt, say d, is backed by the present discounted value of current and future primary surpluses. The remaining debt is backed by seigniorage revenue. The parameter d characterizes the interdependence between fiscal and monetary authorities. It is shown that in a standard monetary economy, this policy rule implies that the price level depends not only on the money stock, but also on the proportion of debt that is backed with money. Empirical estimates of d are obtained for OECD countries using data on nominal consumption, monetary base, and debt. Results indicate that debt plays only a minor role in the determination of the price level in these economies. Estimates of d correlate well with institutional measures of central bank independence.
Resumo:
Dans le domaine des neurosciences computationnelles, l'hypothèse a été émise que le système visuel, depuis la rétine et jusqu'au cortex visuel primaire au moins, ajuste continuellement un modèle probabiliste avec des variables latentes, à son flux de perceptions. Ni le modèle exact, ni la méthode exacte utilisée pour l'ajustement ne sont connus, mais les algorithmes existants qui permettent l'ajustement de tels modèles ont besoin de faire une estimation conditionnelle des variables latentes. Cela nous peut nous aider à comprendre pourquoi le système visuel pourrait ajuster un tel modèle; si le modèle est approprié, ces estimé conditionnels peuvent aussi former une excellente représentation, qui permettent d'analyser le contenu sémantique des images perçues. Le travail présenté ici utilise la performance en classification d'images (discrimination entre des types d'objets communs) comme base pour comparer des modèles du système visuel, et des algorithmes pour ajuster ces modèles (vus comme des densités de probabilité) à des images. Cette thèse (a) montre que des modèles basés sur les cellules complexes de l'aire visuelle V1 généralisent mieux à partir d'exemples d'entraînement étiquetés que les réseaux de neurones conventionnels, dont les unités cachées sont plus semblables aux cellules simples de V1; (b) présente une nouvelle interprétation des modèles du système visuels basés sur des cellules complexes, comme distributions de probabilités, ainsi que de nouveaux algorithmes pour les ajuster à des données; et (c) montre que ces modèles forment des représentations qui sont meilleures pour la classification d'images, après avoir été entraînés comme des modèles de probabilités. Deux innovations techniques additionnelles, qui ont rendu ce travail possible, sont également décrites : un algorithme de recherche aléatoire pour sélectionner des hyper-paramètres, et un compilateur pour des expressions mathématiques matricielles, qui peut optimiser ces expressions pour processeur central (CPU) et graphique (GPU).
Resumo:
Thèse diffusée initialement dans le cadre d'un projet pilote des Presses de l'Université de Montréal/Centre d'édition numérique UdeM (1997-2008) avec l'autorisation de l'auteur.
Resumo:
Le but de cette thèse est d étendre la théorie du bootstrap aux modèles de données de panel. Les données de panel s obtiennent en observant plusieurs unités statistiques sur plusieurs périodes de temps. Leur double dimension individuelle et temporelle permet de contrôler l 'hétérogénéité non observable entre individus et entre les périodes de temps et donc de faire des études plus riches que les séries chronologiques ou les données en coupe instantanée. L 'avantage du bootstrap est de permettre d obtenir une inférence plus précise que celle avec la théorie asymptotique classique ou une inférence impossible en cas de paramètre de nuisance. La méthode consiste à tirer des échantillons aléatoires qui ressemblent le plus possible à l échantillon d analyse. L 'objet statitstique d intérêt est estimé sur chacun de ses échantillons aléatoires et on utilise l ensemble des valeurs estimées pour faire de l inférence. Il existe dans la littérature certaines application du bootstrap aux données de panels sans justi cation théorique rigoureuse ou sous de fortes hypothèses. Cette thèse propose une méthode de bootstrap plus appropriée aux données de panels. Les trois chapitres analysent sa validité et son application. Le premier chapitre postule un modèle simple avec un seul paramètre et s 'attaque aux propriétés théoriques de l estimateur de la moyenne. Nous montrons que le double rééchantillonnage que nous proposons et qui tient compte à la fois de la dimension individuelle et la dimension temporelle est valide avec ces modèles. Le rééchantillonnage seulement dans la dimension individuelle n est pas valide en présence d hétérogénéité temporelle. Le ré-échantillonnage dans la dimension temporelle n est pas valide en présence d'hétérogénéité individuelle. Le deuxième chapitre étend le précédent au modèle panel de régression. linéaire. Trois types de régresseurs sont considérés : les caractéristiques individuelles, les caractéristiques temporelles et les régresseurs qui évoluent dans le temps et par individu. En utilisant un modèle à erreurs composées doubles, l'estimateur des moindres carrés ordinaires et la méthode de bootstrap des résidus, on montre que le rééchantillonnage dans la seule dimension individuelle est valide pour l'inférence sur les coe¢ cients associés aux régresseurs qui changent uniquement par individu. Le rééchantillonnage dans la dimen- sion temporelle est valide seulement pour le sous vecteur des paramètres associés aux régresseurs qui évoluent uniquement dans le temps. Le double rééchantillonnage est quand à lui est valide pour faire de l inférence pour tout le vecteur des paramètres. Le troisième chapitre re-examine l exercice de l estimateur de différence en di¤érence de Bertrand, Duflo et Mullainathan (2004). Cet estimateur est couramment utilisé dans la littérature pour évaluer l impact de certaines poli- tiques publiques. L exercice empirique utilise des données de panel provenant du Current Population Survey sur le salaire des femmes dans les 50 états des Etats-Unis d Amérique de 1979 à 1999. Des variables de pseudo-interventions publiques au niveau des états sont générées et on s attend à ce que les tests arrivent à la conclusion qu il n y a pas d e¤et de ces politiques placebos sur le salaire des femmes. Bertrand, Du o et Mullainathan (2004) montre que la non-prise en compte de l hétérogénéité et de la dépendance temporelle entraîne d importantes distorsions de niveau de test lorsqu'on évalue l'impact de politiques publiques en utilisant des données de panel. Une des solutions préconisées est d utiliser la méthode de bootstrap. La méthode de double ré-échantillonnage développée dans cette thèse permet de corriger le problème de niveau de test et donc d'évaluer correctement l'impact des politiques publiques.
Resumo:
Ma thèse est composée de trois essais sur l'inférence par le bootstrap à la fois dans les modèles de données de panel et les modèles à grands nombres de variables instrumentales #VI# dont un grand nombre peut être faible. La théorie asymptotique n'étant pas toujours une bonne approximation de la distribution d'échantillonnage des estimateurs et statistiques de tests, je considère le bootstrap comme une alternative. Ces essais tentent d'étudier la validité asymptotique des procédures bootstrap existantes et quand invalides, proposent de nouvelles méthodes bootstrap valides. Le premier chapitre #co-écrit avec Sílvia Gonçalves# étudie la validité du bootstrap pour l'inférence dans un modèle de panel de données linéaire, dynamique et stationnaire à effets fixes. Nous considérons trois méthodes bootstrap: le recursive-design bootstrap, le fixed-design bootstrap et le pairs bootstrap. Ces méthodes sont des généralisations naturelles au contexte des panels des méthodes bootstrap considérées par Gonçalves et Kilian #2004# dans les modèles autorégressifs en séries temporelles. Nous montrons que l'estimateur MCO obtenu par le recursive-design bootstrap contient un terme intégré qui imite le biais de l'estimateur original. Ceci est en contraste avec le fixed-design bootstrap et le pairs bootstrap dont les distributions sont incorrectement centrées à zéro. Cependant, le recursive-design bootstrap et le pairs bootstrap sont asymptotiquement valides quand ils sont appliqués à l'estimateur corrigé du biais, contrairement au fixed-design bootstrap. Dans les simulations, le recursive-design bootstrap est la méthode qui produit les meilleurs résultats. Le deuxième chapitre étend les résultats du pairs bootstrap aux modèles de panel non linéaires dynamiques avec des effets fixes. Ces modèles sont souvent estimés par l'estimateur du maximum de vraisemblance #EMV# qui souffre également d'un biais. Récemment, Dhaene et Johmans #2014# ont proposé la méthode d'estimation split-jackknife. Bien que ces estimateurs ont des approximations asymptotiques normales centrées sur le vrai paramètre, de sérieuses distorsions demeurent à échantillons finis. Dhaene et Johmans #2014# ont proposé le pairs bootstrap comme alternative dans ce contexte sans aucune justification théorique. Pour combler cette lacune, je montre que cette méthode est asymptotiquement valide lorsqu'elle est utilisée pour estimer la distribution de l'estimateur split-jackknife bien qu'incapable d'estimer la distribution de l'EMV. Des simulations Monte Carlo montrent que les intervalles de confiance bootstrap basés sur l'estimateur split-jackknife aident grandement à réduire les distorsions liées à l'approximation normale en échantillons finis. En outre, j'applique cette méthode bootstrap à un modèle de participation des femmes au marché du travail pour construire des intervalles de confiance valides. Dans le dernier chapitre #co-écrit avec Wenjie Wang#, nous étudions la validité asymptotique des procédures bootstrap pour les modèles à grands nombres de variables instrumentales #VI# dont un grand nombre peu être faible. Nous montrons analytiquement qu'un bootstrap standard basé sur les résidus et le bootstrap restreint et efficace #RE# de Davidson et MacKinnon #2008, 2010, 2014# ne peuvent pas estimer la distribution limite de l'estimateur du maximum de vraisemblance à information limitée #EMVIL#. La raison principale est qu'ils ne parviennent pas à bien imiter le paramètre qui caractérise l'intensité de l'identification dans l'échantillon. Par conséquent, nous proposons une méthode bootstrap modifiée qui estime de facon convergente cette distribution limite. Nos simulations montrent que la méthode bootstrap modifiée réduit considérablement les distorsions des tests asymptotiques de type Wald #$t$# dans les échantillons finis, en particulier lorsque le degré d'endogénéité est élevé.
Resumo:
La régression logistique est un modèle de régression linéaire généralisée (GLM) utilisé pour des variables à expliquer binaires. Le modèle cherche à estimer la probabilité de succès de cette variable par la linéarisation de variables explicatives. Lorsque l’objectif est d’estimer le plus précisément l’impact de différents incitatifs d’une campagne marketing (coefficients de la régression logistique), l’identification de la méthode d’estimation la plus précise est recherchée. Nous comparons, avec la méthode MCMC d’échantillonnage par tranche, différentes densités a priori spécifiées selon différents types de densités, paramètres de centralité et paramètres d’échelle. Ces comparaisons sont appliquées sur des échantillons de différentes tailles et générées par différentes probabilités de succès. L’estimateur du maximum de vraisemblance, la méthode de Gelman et celle de Genkin viennent compléter le comparatif. Nos résultats démontrent que trois méthodes d’estimations obtiennent des estimations qui sont globalement plus précises pour les coefficients de la régression logistique : la méthode MCMC d’échantillonnage par tranche avec une densité a priori normale centrée en 0 de variance 3,125, la méthode MCMC d’échantillonnage par tranche avec une densité Student à 3 degrés de liberté aussi centrée en 0 de variance 3,125 ainsi que la méthode de Gelman avec une densité Cauchy centrée en 0 de paramètre d’échelle 2,5.