3 resultados para parallelization

em Université de Montréal, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quoique très difficile à résoudre, le problème de satisfiabilité Booléenne (SAT) est fréquemment utilisé lors de la modélisation d’applications industrielles. À cet effet, les deux dernières décennies ont vu une progression fulgurante des outils conçus pour trouver des solutions à ce problème NP-complet. Deux grandes avenues générales ont été explorées afin de produire ces outils, notamment l’approche logicielle et matérielle. Afin de raffiner et améliorer ces solveurs, de nombreuses techniques et heuristiques ont été proposées par la communauté de recherche. Le but final de ces outils a été de résoudre des problèmes de taille industrielle, ce qui a été plus ou moins accompli par les solveurs de nature logicielle. Initialement, le but de l’utilisation du matériel reconfigurable a été de produire des solveurs pouvant trouver des solutions plus rapidement que leurs homologues logiciels. Cependant, le niveau de sophistication de ces derniers a augmenté de telle manière qu’ils restent le meilleur choix pour résoudre SAT. Toutefois, les solveurs modernes logiciels n’arrivent toujours pas a trouver des solutions de manière efficace à certaines instances SAT. Le but principal de ce mémoire est d’explorer la résolution du problème SAT dans le contexte du matériel reconfigurable en vue de caractériser les ingrédients nécessaires d’un solveur SAT efficace qui puise sa puissance de calcul dans le parallélisme conféré par une plateforme FPGA. Le prototype parallèle implémenté dans ce travail est capable de se mesurer, en termes de vitesse d’exécution à d’autres solveurs (matériels et logiciels), et ce sans utiliser aucune heuristique. Nous montrons donc que notre approche matérielle présente une option prometteuse vers la résolution d’instances industrielles larges qui sont difficilement abordées par une approche logicielle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ce mémoire présente une implantation de la création paresseuse de tâches desti- née à des systèmes multiprocesseurs à mémoire distribuée. Elle offre un sous-ensemble des fonctionnalités du Message-Passing Interface et permet de paralléliser certains problèmes qui se partitionnent difficilement de manière statique grâce à un système de partitionnement dynamique et de balancement de charge. Pour ce faire, il se base sur le langage Multilisp, un dialecte de Scheme orienté vers le traitement parallèle, et implante sur ce dernier une interface semblable à MPI permettant le calcul distribué multipro- cessus. Ce système offre un langage beaucoup plus riche et expressif que le C et réduit considérablement le travail nécessaire au programmeur pour pouvoir développer des programmes équivalents à ceux en MPI. Enfin, le partitionnement dynamique permet de concevoir des programmes qui seraient très complexes à réaliser sur MPI. Des tests ont été effectués sur un système local à 16 processeurs et une grappe à 16 processeurs et il offre de bonnes accélérations en comparaison à des programmes séquentiels équiva- lents ainsi que des performances acceptables par rapport à MPI. Ce mémoire démontre que l’usage des futures comme technique de partitionnement dynamique est faisable sur des multiprocesseurs à mémoire distribuée.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’augmentation du nombre d’usagers de l’Internet a entraîné une croissance exponentielle dans les tables de routage. Cette taille prévoit l’atteinte d’un million de préfixes dans les prochaines années. De même, les routeurs au cœur de l’Internet peuvent facilement atteindre plusieurs centaines de connexions BGP simultanées avec des routeurs voisins. Dans une architecture classique des routeurs, le protocole BGP s’exécute comme une entité unique au sein du routeur. Cette architecture comporte deux inconvénients majeurs : l’extensibilité (scalabilité) et la fiabilité. D’un côté, la scalabilité de BGP est mesurable en termes de nombre de connexions et aussi par la taille maximale de la table de routage que l’interface de contrôle puisse supporter. De l’autre côté, la fiabilité est un sujet critique dans les routeurs au cœur de l’Internet. Si l’instance BGP s’arrête, toutes les connexions seront perdues et le nouvel état de la table de routage sera propagé tout au long de l’Internet dans un délai de convergence non trivial. Malgré la haute fiabilité des routeurs au cœur de l’Internet, leur résilience aux pannes est augmentée considérablement et celle-ci est implantée dans la majorité des cas via une redondance passive qui peut limiter la scalabilité du routeur. Dans cette thèse, on traite les deux inconvénients en proposant une nouvelle approche distribuée de BGP pour augmenter sa scalabilité ainsi que sa fiabilité sans changer la sémantique du protocole. L’architecture distribuée de BGP proposée dans la première contribution est faite pour satisfaire les deux contraintes : scalabilité et fiabilité. Ceci est accompli en exploitant adéquatement le parallélisme et la distribution des modules de BGP sur plusieurs cartes de contrôle. Dans cette contribution, les fonctionnalités de BGP sont divisées selon le paradigme « maître-esclave » et le RIB (Routing Information Base) est dupliqué sur plusieurs cartes de contrôle. Dans la deuxième contribution, on traite la tolérance aux pannes dans l’architecture élaborée dans la première contribution en proposant un mécanisme qui augmente la fiabilité. De plus, nous prouvons analytiquement dans cette contribution qu’en adoptant une telle architecture distribuée, la disponibilité de BGP sera augmentée considérablement versus une architecture monolithique. Dans la troisième contribution, on propose une méthode de partitionnement de la table de routage que nous avons appelé DRTP pour diviser la table de BGP sur plusieurs cartes de contrôle. Cette contribution vise à augmenter la scalabilité de la table de routage et la parallélisation de l’algorithme de recherche (Best Match Prefix) en partitionnant la table de routage sur plusieurs nœuds physiquement distribués.